
T–79.4201 Search Problems and Algorithms

Lecture 9: Linear and integer programming
algorithms

I Solving MIPs:
Relaxations
Branch and bound search

I Solving LPs:
Simplex algorithm

I.N. & P.O. Autumn 2006 1

T–79.4201 Search Problems and Algorithms

Solving MIPs
I A typical approach is use branch and bound search with a

suitable relaxation.
I A relaxation of a problem removes constraints in order to get an

easier to solve problem.
I Given a MIP P, its relaxation R(P) is a problem satisfying the

following conditions (for a minimization problem P):
R1: for the optimal solution value z ′ (value of the objective function) to

R(P) and for z∗ which is that of P, it holds that z∗ ≥ z ′.
R2: if the optimal solution to R(P) is feasible to P, it is optimal for P,
R3: if R(P) is infeasible, then so is P.

I A useful relaxation of a MIP P satisfying these condition is the
linear relaxation LR(P) of P which is obtained by removing the
integrality constraints from P.

I LR(P) satisfies conditions R1–R3 because feasible solutions of
LR(P) include all feasible solutions of P.

I Linear relaxation is computationally interesting because it is a
strong relaxation which provides a global view on the constraints.

I.N. & P.O. Autumn 2006 2

T–79.4201 Search Problems and Algorithms

Branch and bound
Given a MIP P and its relaxation R(P), branch and bound works as
follows:

1. Solve R(P) to get an optimal relaxation solution x∗.

2. If R(P) is infeasible, then so is P (by R3)
else if x∗ is feasible to P, then x∗ is optimal to P (by R2)
else create new problems P1, . . . ,Pk by branching and solve
recursively. Stop examining a subproblem if it cannot be optimal
to P (bounding).

I.N. & P.O. Autumn 2006 3

T–79.4201 Search Problems and Algorithms

Branching

I Given a problem P branching creates new subproblems
P1, . . . ,Pk based on an optimal solution x∗ to R(P) that is not
feasible to P.

I The subproblems P1, . . . ,Pk must satisfy the properties:
I Every feasible solution to P is feasible to at least one of P1, . . . ,Pk .
I x∗ is not feasible in any of R(P1), . . . ,R(Pk ).

I For the linear relaxation, x∗ is not feasible iff there is a variable xj

that has a fractional value x∗
j in x∗.

I For such a variable xj with a fractional value x∗
j , we can create

two subproblems:
I one with the additional constraint xj ≤ bx∗

j c;
I one with the additional constraint xj ≥ bx∗

j c+1.

I The two subproblems obtained in this way satisfy the two
conditions above.

I.N. & P.O. Autumn 2006 4



T–79.4201 Search Problems and Algorithms

Bounding

I Bounding also uses relaxation.

I Suppose we have generated a feasible solution to some
subproblem with solution value z∗. This could be optimal to a
subproblem but we do not yet know whether it is optimal to P.

I Then for each subproblem Pi whose relaxation R(Pi) has the
optimal solution value z ′i ≥ z∗, we can cease examining this
subproblem (bounding).

I This is because by R1 z∗i ≥ z ′i where z∗i is the optimal (minimum)
solution value for Pi and, hence, it is not possible to find a
solution with a smaller solution value than z∗ among the feasible
solutions to Pi .

I.N. & P.O. Autumn 2006 5

T–79.4201 Search Problems and Algorithms

Improving Effectiveness

I Careful formulation
I Strong relaxations typically work well but are often bigger in size.
I Break symmetries.
I Multiple “big-M” values often lead to performance problems.
I Deciding which formulation works better needs often

experimentation.

I Cutting plans
These are constraints that are added to a relaxation to “cut off”
the optimal relaxation solution x∗. Often are problem specific but
there are also general techniques (e.g. Gomory cuts).

I Special branching rules
In many systems, for example, Special Ordered Sets are
available.

I.N. & P.O. Autumn 2006 6

T–79.4201 Search Problems and Algorithms

Solving Linear Relaxation

I Linear Relaxation of a MIP gives a linear program (LP)
I There are a number of well-known techniques for solving LPs

I Simplex method
The oldest and most widely used method with very mature
implementation techniques.
Worst-case time complexity exponential but seems to work
extremely well in practice.

I Interior point methods
A newer approach; polynomial time worst case time complexity;
implementation techniques advancing

I Next, Simplex method is reviewed as an example.

I.N. & P.O. Autumn 2006 7

T–79.4201 Search Problems and Algorithms

Simplex Method
I Assumes that the linear program is in standard form:

min
n

∑
i=1

cixi s.t.

n

∑
j=1

aijxj = bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . ,n

I The basic idea: start from a basic feasible solution and look at the
adjacent ones. If an improvement in cost is possible by moving to
an adjacent solution, we do so. An optimal solution has been
found if no improvement is possible.

I Next we briefly review the basic concepts needed:
I basic feasible solutions (bfs)
I move from one bfs to another (pivoting)
I the overall simplex algorithm

I.N. & P.O. Autumn 2006 8



T–79.4201 Search Problems and Algorithms

Basic Feasible Solutions

I Assume an LP in standard form with m linear equations and n
variables x1, . . . ,xn, m < n.

I A solution to the LP is an assignment of a real number to each
variable xi such that all equations are satisfied.

I A solution safisfying the following condition is called a basic
solution:

I n−m variables are set to 0 and
I the assignment for the other m variables (the basis) gives a

unique solution to the resulting set of m linear equations.

I This means that a basic solution is obtained by choosing m
variable as the basis, setting the other n−m variables to zero
and solving the resulting set of equations for the basic variables.
If there is a unique solution, this is gives a basic solution.

I A basic feasible solution (bfs) is a basic solution such that every
variable is assigned a value ≥ 0.

I.N. & P.O. Autumn 2006 9

T–79.4201 Search Problems and Algorithms

Example
I Consider the LP

min 2x2 + x4 +5x7

x1 + x2 + x3 + x4 = 4
x1 + x5 = 2

x3 + x6 = 3
3x2 + x3 + x7 = 6

x1, . . . ,x7 ≥ 0

I For example, the basis (x4,x5,x6,x7) gives a basic feasible
solution x0 = (0,0,0,4,2,3,6) because
x4 = 4,x5 = 2,x6 = 3,x7 = 6 is the unique solution to the
resulting set of equations:

0 + 0 + 0 + x4 = 4
0 + x5 = 2

0 + x6 = 3
3 ·0 + 0 + x7 = 6

I.N. & P.O. Autumn 2006 10

T–79.4201 Search Problems and Algorithms

Moving from bfs to bfs

I When moving from one bfs to another the idea is to remove one
variable from the basis and replace it with another. This is called
pivoting.

I In Simplex this is organized as a manipulation of a tableau where,
for instance, a set of equations

3x1 + 2x2 + x3 = 1
5x1 + x2 + x3 + x4 = 3
2x2 + 5x2 + x3 + x5 = 4

is represented as

x1 x2 x3 x4 x5

1 3 2 1 0 0
3 5 1 1 1 0
4 2 5 1 0 1

I.N. & P.O. Autumn 2006 11

T–79.4201 Search Problems and Algorithms

Tableaux

I Pivoting is handled by keeping the set of equations diagonalized
with respect to the basic variables.

I This can be achieved using elementary row operations (Gaussian
elimination): multiplying a row with a non-zero constant; adding a
row to another.

Example.
Consider the set of equations

x1 x2 x3 x4 x5

1 3 2 1 0 0
3 5 1 1 1 0
4 2 5 1 0 1

Given a basis B = (x3,x4,x5), we
can transform the tableau to a di-
agonalized form w.r.t. it by multi-
plying Row 1 with -1 and adding
it to Rows 2 and 3:

x1 x2 x3 x4 x5

1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

I.N. & P.O. Autumn 2006 12



T–79.4201 Search Problems and Algorithms

Tableaux—cont’d

I We denote by xi,j the entry on the i th row and j th column in a
tableau.

I Notice that in the diagonalized form column 0 gives the values of
the basic variables in the bfs x0 in question:

x0B(i) = xi,0, i = 1, . . . ,m

where B(i) denotes the column of the i th basic variable.

I Example . Consider the set of equations:

x1 x2 x3 x4 x5

1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

Given the basis B = (x3,x4,x5), B(1) = 3,B(2) = 4,B(3) = 5
and for its basic solution x0 holds: x03 = 1,x04 = 2,x05 = 3

I.N. & P.O. Autumn 2006 13

T–79.4201 Search Problems and Algorithms

Pivoting
I In pivoting a chosen variable xj enters the basis and another

variable xi leaves it.
I In the tableau this defines a pivot element xl,j where column j

corresponds to the entering variable xj and row l to the leaving
variable xi such that B(l) = i . We say that we pivot on xl,j .

Example

Consider the tableau

x1 x2 x3 x4 x5

1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

and the case where x1 enters and x3 leaves the basis.

Now the pivot element is x1,1 as B(1) = 3.

I.N. & P.O. Autumn 2006 14

T–79.4201 Search Problems and Algorithms

Pivoting

I In pivoting the tableau is brought to the diagonalized form w.r.t.
the new basis using elementary row operations (Gaussian
elimination):

I for the pivot row l , all elements are divided by the pivot element
and, hence, the pivot element in the new tableau is 1;

I for other rows i , the resulting pivot row multiplied by xi,j is
subtracted from the row, and, hence all elements in column j
(except the pivot element) are 0 in the new tableau.

I This means that

x ′
l,q =

xl,q

xl,j
q = 0, . . . ,n

x ′
i,q = xi,q − x ′

l,qxi,j i = 1, . . . ,m; i 6= l
q = 0, . . . ,n

where xi,j and x ′
i,j are the old and new tableaux, respectively.

I.N. & P.O. Autumn 2006 15

T–79.4201 Search Problems and Algorithms

Example

I Consider the tableau below and the pivot element x1,1.

x1 x2 x3 x4 x5

1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

I After pivoting we obtain a new tableau:

x1 x2 x3 x4 x5
1
3 1 2

3
1
3 0 0

4
3 0 −7

3 −2
3 1 0

10
3 0 11

3
1
3 0 1

where, e.g., x2,2 = −1−2 2
3 = −7

3 .

I The new basis is (x1,x4,x5) and, hence,
B(1) = 1,B(2) = 4,B(3) = 5.

I.N. & P.O. Autumn 2006 16



T–79.4201 Search Problems and Algorithms

Cost Function in the Tableau
I A cost function z = ∑n

i=1 cixi

can be added as an extra
equation −z +∑n

i=1 cixi = 0 to
the tableau (no need to add a
column for z).

I To start, we need a bfs and to
make zero the cjs for the basic
variables.

I This can be done using
elementary row operations.

I Our running example and a
cost function
z = x1 + x2 + x3 + x4 + x5

lead to a tableau:

x1 x2 x3 x4 x5

0 1 1 1 1 1
1 3 2 1 0 0
3 5 1 1 1 0
4 2 5 1 0 1

I Consider the example with
x3,x4, and x5 as the basis.

I After transformation to the
diagonalized form, subtract the
resulting Rows 1, 2, 3 from
Row 0, to get the desired form.

x1 x2 x3 x4 x5

−6 −3 −3 0 0 0
1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

I.N. & P.O. Autumn 2006 17

T–79.4201 Search Problems and Algorithms

Choosing a Profitable Column

I It turns out that the cost function can be improved if we move to a
bfs containing a non-basic variable xj where the corresponding
value cj in the tableau is negative.

I If no such cj exists, then an optimal solution has been found.

I Consider the previous example with the basis (x3,x4,x5). Now
the equation for the cost function is −z −3x1 −3x2 = −6, i.e.,
z = −3x1 −3x2 +6. Hence, we can improve (decrease) the value
of the cost function by increasing the value of x1 or x2 (because
c1 = c2 = −3 < 0) and, hence, the current bfs x0 = (0,0,1,2,3)
is not an optimal one.

I Hence, we could move to a new bfs with entering variable x1 or x2

to improve the cost function.

I But how to choose the leaving variable?

I.N. & P.O. Autumn 2006 18

T–79.4201 Search Problems and Algorithms

Choosing the Leaving Variable

I The idea is to move to an adjacent bfs containing the entering
variable xj .

I In order not to miss an adjacent bfs we need to choose a pivot
element xk ,j with the smallest positive ratio x0k

xk ,j
, that is, a xk ,j such

that
x0k

xk ,j
= min

i
xi,j>0

(
x0i

xi,j
)

where x0 is the current bfs.

I Then the leaving variable is B(k).

I.N. & P.O. Autumn 2006 19

T–79.4201 Search Problems and Algorithms

Example

I Consider the tableau

x1 x2 x3 x4 x5

−6 −3 −3 0 0 0
1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

I If x2 is the entering variable, the ratios are: i x0i
xi,2

1 1
2

2 −2
1

3 3
3

I Then the pivot element is x1,2 because the smallest positive ratio
x0i
xi,2

is 1
2 for i = 1 and the leaving variable is x3 as B(1) = 3.

I.N. & P.O. Autumn 2006 20



T–79.4201 Search Problems and Algorithms

Simplex algorithm

procedure Simplex
opt := “no”; unbounded := “no”;
while opt = “no” and unbounded = “no” do

if cj ≥ 0 for all j then opt := “yes”
else

choose any j such that cj < 0 ;
ifxi,j ≤ 0 for all i then unbounded := “yes”
else

find min
i

xi,j>0

(
x0i

xi,j
) =

x0k

xk ,j

and pivot on xk ,j

end if
end if

end while .

I.N. & P.O. Autumn 2006 21

T–79.4201 Search Problems and Algorithms

Example

I Consider the tableau on the
right (above).

I Running Simplex on this
tableau, we notice that for
variables x1 and x2, cj < 0.

I If we choose c2, then we need
to pivot on x1,2 as argued in
the previous example.

I Then the new tableau is on the
right (below).

I Here all cjs are positive and,
hence, an optimal solution
(0,

1
2 ,0,

5
2 ,

3
2) has been found

with cost 9
2 (−z = − 9

2 ).

x1 x2 x3 x4 x5

−6 −3 −3 0 0 0
1 3 2 1 0 0
2 2 −1 0 1 0
3 −1 3 0 0 1

x1 x2 x3 x4 x5

−9
2

3
2 0 3

2 0 0
1
2

3
2 1 1

2 0 0
5
2

7
2 0 1

2 1 0
3
2 −11

2 0 −3
2 0 1

I.N. & P.O. Autumn 2006 22

T–79.4201 Search Problems and Algorithms

Further Issues
For an efficient implementation of Simplex there are a number issues
that need to be handled:

I Finding the first bfs to start Simplex:
artificial variable method, two-phase method, . . .

I How to choose the entering variable:
nonbasic gradient method (choosing the most negative cj ),
greatest increment method, . . .

I How to choose the pivot element in case of a tie:
avoiding cycling, . . .

I.N. & P.O. Autumn 2006 23

T–79.4201 Search Problems and Algorithms

Summary: Solving MIPs

I Experiment with different formulations as well as different
systems and solving techniques to see which performs best.

I Avoid multiple “big-M” values.

I Try to break symmetries.

I Do not introduce unnecessary integer variables.

I Scale the coefficients in the constraint to as small as possible.

I.N. & P.O. Autumn 2006 24


