
T–79.4201 Search Problems and Algorithms

Lecture 8: Linear and integer programming
modelling and tools

I Normal and standard forms

I Modelling

I Tools

I.N. & P.O. Autumn 2006 1

T–79.4201 Search Problems and Algorithms

General Linear Programs

I In a general linear program

min
n

∑
i=1

cixi s.t.

n

∑
j=1

aijxj = bi , i = 1, . . . ,m

lj ≤ xj ≤ uj

inequalities with ≤ or ≥ can occur in addition to equalities,
maximization can be used instead of minimization, and some of
the variables can be unrestricted (do not have bounds).

I A general LP can be transform to an equivalent simpler form, for
instance, to a canonical or standard form (introduced below).

I Two forms are equivalent if they have the same set of optimal
solutions or are both infeasible or both unbounded.

I.N. & P.O. Autumn 2006 2

T–79.4201 Search Problems and Algorithms

Standard and Canonical Forms
I An LP is in canonical form when

I the object function is minimized,
I all constraints are inequalities of the form ∑n

j=1 aijxj ≥ bi , and
I all variables are non-negative, i.e., bounded by the constraint

xj ≥ 0.

that is, the LP is in the form

min
n

∑
i=1

cixi s.t.

n

∑
j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . ,n

I The standard form is similar but all constraints are of the form

∑n
j=1 aijxj=bi .

I.N. & P.O. Autumn 2006 3

T–79.4201 Search Problems and Algorithms

Standard and Canonical Forms
An LP can be converted to standard or canonical form using the
following transformations:

I Maximization of a function is equivalent to minimization of its
opposite: max f (x1, . . . ,xn) ⇔ min−f (x1, . . . ,xn)

I An equality can be transformed to a pair of inequalities

n

∑
j=1

aijxj = bi ⇔

{

∑n
j=1 aijxj ≥ bi

∑n
j=1−aijxj ≥−bi

I An inequality can be transfrom to an equality by adding a slack
(surplus) variable

n

∑
j=1

aijxj≤bi ⇔

{

∑n
j=1 aijxj+s =bi

s ≥ 0

n

∑
j=1

aijxj≥bi ⇔

{

∑n
j=1 aijxj−s =bi

s ≥ 0

I.N. & P.O. Autumn 2006 4



T–79.4201 Search Problems and Algorithms

Transformations—cont’d

I An unrestricted variable xj can be eliminated using a pair of
non-negative variables x+

j ,x−
j by replacing xj everywhere with

x+
j − x−

j and imposing x+
j ≥ 0,x−

j ≥ 0.

I Non-positivity constraints can be expressed as non-negativity
constraints: to express xj ≤ 0, replace xj everywhere with −yj

and impose yj ≥ 0.

I These transformation are sometimes needed when modelling if
the tool used does not support a feature exploited in the LP
model, for example, non-positive or unrestricted variables.

I.N. & P.O. Autumn 2006 5

T–79.4201 Search Problems and Algorithms

Example.

I Consider the problem of transforming
the LP on the left to standard form.
We illustrate the transformation in two
steps.

max x2 − x1 s.t.
3x1 − x2 ≥ 0
x1 + x2 ≤ 6
−2 ≤ x1 ≤ 0

I First:
turn maximization to minimization,
turn the unrestricted variable x2 to a
pair of non-negative variables and
treat bounds as constraints
to obtain:

min −(x+
2 − x−

2 )+ x1 s.t.
3x1 − (x+

2 − x−
2 ) ≥ 0

x1 +(x+
2 − x−

2 ) ≤ 6
x1 ≥−2
x1 ≤ 0
x+

2 ≥ 0,x−
2 ≥ 0

I.N. & P.O. Autumn 2006 6

T–79.4201 Search Problems and Algorithms

Example—cont’d

I Second:
eliminate non-positivity constraints
and transform inequalities to equali-
ties with slack and surplus variables
to obtain:

min −x+
2 + x−

2 − y1 s.t.
−3y1 − x+

2 + x−
2 − s1 = 0

−y1 + x+
2 − x−

2 + s2 = 6
−y1 − s3 = −2
y1 ≥ 0
x+

2 ≥ 0,x−
2 ≥ 0

s1 ≥ 0,s2 ≥ 0,s3 ≥ 0

I.N. & P.O. Autumn 2006 7

T–79.4201 Search Problems and Algorithms

Modelling
The diet problem: (a typical problem suitable for linear programming)

I Given
ai,j : amount of the i th nutrient in a unit of the j th food item
ri : yearly requirement of the i th nutrient
cj : cost per unit of the j th food item

I Build a yearly diet (decide yearly consumption of n food items)
such that it satisfies the minimal nutritional requirements for m
nutriets and is as inexpensive as possible.

I LP solution: take variables xj to represent yearly consumption of
the j th food item

min c1x1 + · · ·cnxn s.t.
a1,1x1 + · · ·+a1,nxn ≥ r1
...
am,1x1 + · · ·+am,nxn ≥ rm

x1 ≥ 0, . . . ,xn ≥ 0

I.N. & P.O. Autumn 2006 8



T–79.4201 Search Problems and Algorithms

Knapsack
(a typical problem suitable for (0-1) integer programming)

I Given: a knapsack of a fixed volume v and n objects, each with a
volume ai and a value bi .

I Find a collection of these objects with maximal total value that fits
in the knapsack.

I IP solution: for each item i take a binary variable xi to model
whether item i is included (xi = 1) or not (xi = 0)

maxb1x1 + · · ·bnxn s.t.
a1x1 + · · ·+anxn ≤ v
0 ≤ x1 ≤ 1, . . . ,0 ≤ xn ≤ 1
xj is integer for all j ∈ {1, . . . ,n}

I.N. & P.O. Autumn 2006 9

T–79.4201 Search Problems and Algorithms

Warehouse Location Problem
(A more complicated 0-1 IP problem)

I There is a set of n customers who need to be assigned to one of
the m potential warehouse locations.

I Customers can only be assigned to an open warehouse, with
there being a cost of cj for opening warehouse j .

I Once open, a warehouse can serve as many customers as it
chooses (with different costs di,j for each customer-warehouse
pair).

I Choose a set of warehouse locations that minimizes the overall
costs of serving all the n customers.

I IP solution: introduce binary variables
xj representing the decision to open warehouse j
yi,j representing the decision to assign customer i to warehouse j

I.N. & P.O. Autumn 2006 10

T–79.4201 Search Problems and Algorithms

Warehouse Location Problem—cont’d
I Objective function to minimize:

m

∑
j=1

cjxj +
n

∑
i=1

m

∑
j=1

di,jyi,j

I Customers are assigned to exactly one warehouse:

m

∑
j=1

yi,j = 1 for all i = 1, . . . ,n

I Customers can be assigned only to an open warehouse.
Two approaches:

I If a warehouse is open, it can serve all n customers:

n

∑
i=1

yi,j ≤ nxj for all j = 1, . . . ,m

I If a customer i is assigned to warehouse j , it must be open:

yi,j ≤ xj for all j = 1, . . . ,m and i = 1, . . . ,n

I.N. & P.O. Autumn 2006 11

T–79.4201 Search Problems and Algorithms

Expressing Constraints in MIP
I Some constraints cannot be represented straightforwardly using

linear constraints.
I A frequently occuring situation involves combining constraints

“disjunctively”.
I An implication is a typical example which can sometimes be

encoded by introducing an additional variable and a new large
constant.

I Example. Consider a binary variable x and the constraint “if
x = 1 then ∑n

j=1 xj ≥ bi ” where each xj is non-negative.
Using a large constant M this can be expressed as follows:

n

∑
j=1

xj ≥ bi −M(1− x)

Notice that here if x = 1, then ∑n
j=1 xj ≥ bi must hold but if x = 0,

then ∑n
j=1 xj ≥ bi −M imposes no constraint on variables

x1, . . . ,xn if we choose some M ≥ bi .

I.N. & P.O. Autumn 2006 12



T–79.4201 Search Problems and Algorithms

Expressing Constraints—cont’d

I Example. Consider a disjunctive constraint “x ≥ 5 or y ≤ 6”
where x and y are non-negative and y ≤ 1000.
This constraint can be encoded by introducing a new binary
variable b and constant M as follows

x +Mb ≥ 5
y −M(1−b) ≤ 6

Here if we choose M ≥ 994, then
I if b = 0, we have constraints x ≥ 5 and y −M ≤ 6 where the latter

is satisfied by every value of y (0 ≤ y ≤ 1000) and
I if b = 1, we have constraints x +M ≥ 5 and y ≤ 6 where the

former is satisfied by every value of x ≥ 0.

I Unfortunately, these techniques for expressing disjunctions are
are not general and, e.g., choosing a value for the constant M is
often non-trivial.

I.N. & P.O. Autumn 2006 13

T–79.4201 Search Problems and Algorithms

Example: Resource Constraints

I In a scheduling application typically following types of variables
are used:
sj : starting time for job j
xij : binary variable representing whether job i occurs before job j

I Consider now a typical constraint:
“If job 2 occurs after job 1, then it starts at least 10 time units after
the end of job 1”

I This is an implication that can be represented by introducing a
suitably large constant M (d1 is the duration of job 1):

s2 ≥ s1 +d1 +10−M(1− x12)

I If x12 = 1: we get s2 ≥ s1 +d1 +10 as required.
I If x12 = 0: we get s2 ≥ s1 +d1 +10−M, which implies no

restriction on s2 if M is sufficiently large.

I.N. & P.O. Autumn 2006 14

T–79.4201 Search Problems and Algorithms

Example: Resource Constraints—cont’d

I Disjunctive constraints on binary variables can be expressed
straightforwardly.

I For example, to enforce that the values of variables xij are
assigned consistently according to their intuitive meaning
following constraints need to be added.

I “Either i occurs before j or the reverse but not both”
This is an exclusive-or constraint which can be encoded directly:

xij + xji = 1 (i 6= j)

I “If i occurs before j and j before k , then i occurs before k .”
This can be seen as a disjunction ¬xij ∨¬xjk ∨ xik of binary
variables xij ,xjk ,xik :

xij + xjk − xik ≤ 1

A potential problem: O(n3) constraints are needed where n is the
number of jobs.

I.N. & P.O. Autumn 2006 15

T–79.4201 Search Problems and Algorithms

Routing Constraints
(An example of a problem where finding a compact MIP encoding is
challenging).

I Consider the Hamiltonian cycle problem:
INSTANCE: A graph (V ,E).
QUESTION: Is there a simple cycle visiting all nodes of the
graph?

I Introduce a binary variable xi,j for each edge (i, j) ∈ E indicating
whether the edge is included in the cycle (xi,j = 1) or not (xi,j = 0).

I Constraints:
I The cycle leaves each node i through exactly one edge:

∑
j

xi,j = 1

I The cycle enters each node i through exactly one edge:

∑
j

xj,i = 1

I.N. & P.O. Autumn 2006 16



T–79.4201 Search Problems and Algorithms

Hamiltonian Cycle
I However, the constraints above are not sufficient.
I Consider, for example, a graph with 6 nodes such that variables

x1,2,x2,3,x3,1,x4,5,x5,6,x6,4 are set to 1 and all others to 0.
This solution satisfies the constraints but does not represent a
Hamiltonian cycle (two separate cycles).

I Enforcing a single cycle is non-trivial.
I A solution for small graphs is to require that the cycle leaves

every proper subset of the nodes, that is, to have a constraint

∑
(i,j)∈E ,i∈s,j 6∈s

xi,j ≥ 1

for every proper subset s of the nodes V .
I In the example above, this constraint would be violated for

s = {1,2,3}.
I A potential problem for bigger graphs: O(2n) constraints needed

where n is the number of nodes.

I.N. & P.O. Autumn 2006 17

T–79.4201 Search Problems and Algorithms

Hamiltonian Cycle–cont’d
I Another approach, where the number of constraints remains

polynomial, is to introduce an integer variable pi for each node
i = 1, . . . ,n in the graph to represent the position of the node i in
the cycle, that is, pi = k means that node i is k th node visited in
the cycle.

I In order to enforce a single cycle we need to enforce the following
conditions.

I Each pi has a value in {1, . . . ,n}:

1 ≤ pi ≤ n

I This value is unique, that is, for all pairs of nodes i and j with
i 6= j , pj 6= pi holds.

I For all pairs of nodes i and j with i 6= j such that (i, j) 6∈ E , node j
cannot be the next node after i , that is,

I pj 6= pi +1 holds and
I if pi = n, then pj ≥ 2.

I.N. & P.O. Autumn 2006 18

T–79.4201 Search Problems and Algorithms

Hamiltonian Cycle–cont’d

I For condition ‘if pi = n, then pj ≥ 2” we can use the technique for
implications:

pj ≥ 2− (n−pi)

Notice that
I if n = pi , then we get pj ≥ 2 and
I if n > pi , then the constraint is satisfied for all value of pj

(1 ≤ pj ≤ n).

I To complete the encoding in IP we need to express disequality
(6=)

I.N. & P.O. Autumn 2006 19

T–79.4201 Search Problems and Algorithms

Expressing Disequality

I For expressing an arbitrary disequality x 6= y of two bounded
integer variables x and y we reformulate the disequality as “x > y
or y > x” or equivalently “x − y ≥ 1 or x − y ≤−1”.

I Now we can model the disjunction using a binary variable b and a
large constant M and the constraints

x − y +Mb ≥ 1
x − y −M(1−b) ≤−1

Notice that
I if b = 0, then we get x − y ≥ 1,x − y ≤ M −1 and
I if b = 1, then we get x − y +M ≥ 1,x − y ≤−1

where the constraints involving M are satisfied by all values of
x ,y given large enough M w.r.t. to the bounds on the values of
x ,y .

I.N. & P.O. Autumn 2006 20



T–79.4201 Search Problems and Algorithms

MIP Tools

I There are several efficient commercial MIP solvers.

I Also public domain systems exists but these are not as efficient
as the commercial ones.

I See, for example,
http://www-unix.mcs.anl.gov/otc/Guide/faq/
linear-programming-faq.html
for MIP systems and other information and frequently asked
questions.

I.N. & P.O. Autumn 2006 21

T–79.4201 Search Problems and Algorithms

MIP Solvers

I A MIP solver can typically take its input via an input file and an
API.

I There a number of wide used input formats (like mps) and tool
specific formats (lp_solve, CPLEX, LINDO, GNU MathProg,
LPFML XML, . . . )

I MIP solvers do not require the input program to be in a standard
form but typically quite general MIPs are allowed, that is

I both minimization and maximization are supported and
I operators “=”, “≤”, and “≥” can all be used.

I.N. & P.O. Autumn 2006 22

T–79.4201 Search Problems and Algorithms

lp_solve

I In the third home assignment a public domain MIP solver,
lp_solve is employed.

I See the newest version (5.5) at
http://lpsolve.sourceforge.net/5.5/

I lp_solve accepts a number of input formats
Example. lp_solve native format
min: x1 + x2 + 3x3;

x1 - x2 <= 1;
2x2 - 2.5x3 >= 1;
-7x3 + x2 = 3;

> lp_solve < example
Value of objective function: 3
x1 0
x2 3
x3 0

I.N. & P.O. Autumn 2006 23

http://www-unix.mcs.anl.gov/otc/Guide/faq/
linear-programming-faq.html
http://lpsolve.sourceforge.net/5.5/

