Lecture 7: Constraint satisfaction Linear and integer programming

- Constraint satisfaction
 - Global constraints
 - Local search
 - Tools for SAT and CSP
- Linear and integer programming
 - Introduction

Global Constraints

- Constraint programming systems often offer constraints with special purpose constraint propagation (filtering) algorithms.
 Such a constraint can typically be seen as an encapsulation of a set of simpler constraints and is called a global constraint.
- A representative example is the alldiff constraint:

alldiff $(x_1, \ldots, x_n) = \{(d_1, \ldots, d_n) \mid d_i \neq d_j, \text{for } i \neq j\}$

Example. A tuple (a, b, c) satisfies all diff (x_1, x_2, x_3) but (a, b, a) does not.

alldiff(x₁,...,x_n) can be seen as an encapsulation of a set of binary constraints x_i ≠ x_i, 1 ≤ i < j ≤ n.</p>

<ロ > < 己 > < 己 > < 己 > < 己 > < 己 > < 己 > < 王 > < 王 > へへ I.N. & P.O. Autumn 2006 1 I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Global Constraints: alldiff

- Global constraints enable compact encodings of problems.
- **Example.** N Queens

Problem: Place *n* queens on a $n \times n$ chess board so that they do not attack each other.

- Variables: x₁,..., x_n (x_i gives the position of the queen on ith column)
- Domains: [1..n]
- ► Constraints: for $i \in [1..n-1]$ and $j \in [i+1..n]$: (i) alldiff $(x_1,...,x_n)$ (rows) (ii) $x_i - x_j \neq i - j$ (SW-NE diagonals) (iii) $x_i - x_i \neq j - i$ (NW-SE diagonals)

-79.4201 Search Problems and Algorithms

Global Constraints: Propagation

- In addition to compactness global constraints often provide more powerful propagation than the same condition expressed as the set of corresponding simpler constraints.
- Consider the case of alldiff:

For all diff $(x_1, ..., x_n)$ there is an efficient hyper-arc consistency algorithm which allows more powerful propagation than hyper-arc consistency for the set of corresponding " \neq " constraints.

- **Example.**
 - Consider variables x₁, x₂, x₃ with domains D₁ = {a,b,c}, D₂ = {a,b}, D₃ = {a,b}.
 - Now alldiff(x₁, x₂, x₃) is not hyper-arc consistent and the projection rule removes values a, b from the domain of x₁.
 - ► However, the corresponding set of constraints x₁ ≠ x₂, x₁ ≠ x₃, x₂ ≠ x₃ is hyper-arc consistent and the projection rule is not able to remove any values.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへで

Global Constraints: Other Examples

- When solving a CSP problem often a special purpose (global) constraint and an efficient propagation algorithm for it needs to be developed to make the solution technique more efficient.
- There is a wide range of such global constraints (see for example Global Constraint Catalog http://www.emn.fr/x-info/sdemasse/gccat/):
 - cumulative
 - diff-n
 - cycle
 - sort
 - alldifferent and permutation
 - symmetric alldifferent
 - global cardinality (with cost)
 - sequence
 - minimum global distance
 - k-diff

. . .

number of distinct values

I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

MCH-cont'd

- One can add to MCH a random walk step like in NoisyGSAT (WMCH algorithm; Wallace and Freuder, 1995).
- MCH can be extended with a tabu search mechanism (Steinmann et al. 1997):
 - After each search step where the value of a variable x_i has changed from v to v', the variable-value pair (x_i, v) is declared tabu for the next tt steps.
 - While (x_i, v) is tabu, value v is excluded from the selection of values for x_i except if assigning v to x_i leads to an improvement in the evaluation function over the incumbent assignment.

CSP: Local Search

- GSAT and WalkSAT type of local search algorithms (see Lecture 4) can be generalized to CSPs.
- As an example we consider Min Conflict Heuristic (MCH) algorithm (Minton et al, 1990): Given a CSP instance P
 - Initialize each variable by selecting a value uniformly at random from its domain.
 - In each local step select a variable x_i uniformly at random from from the conflict set, which is the set of variables appearing in a constraint that is unsatisfied under the current assignment.
 - A new value v for x_i is selected from the domain of x_i such that by assigning v to x_i the number of conflicting constraints is minimized.
 - If there is more than one value with that property, one of the minimizing values is chosen uniformly at random.

・ ロ ト 4 母 ト 4 目 ト 4 目 ・ りへぐ

.N. & P.O. Autumn 2006

I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

CSP: Tabu Search

- A tabu search algorithm by Galiner and Hao is one of the best performing general local search algorithms for CSPs.
- **TS-GH** algorithm (Galiner and Hao, 1997):
 - Initialize each variable by selecting a value uniformly at random from its domain.
 - In each local step: among all variable-value pairs (x, v) such that x appears in a constraint that is unsatisfied under the current assignment and v is in the domain of x, select a pair (x, v) that leads to a maximal decrease in the number of violated constraints.
 - If there are multiple such pairs, one of them is chosen uniformly at random.
 - After changing the assignment of x from v to v', the pair (x, v) is declared tabu for tt steps (except when leading to an improvement).
- For competitive performance, the evaluation function for variable-value pairs needs to be implemented using caching and incremental updating techniques.

・ロト・4回ト・モディ 明・ のへの

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

SAT: Local Search

- Local search methods have difficulties with structured problem instances.
- For good performance parameter tuning is essential. (For example in WalkSAT: the noise parameter p and the max_flips parameter.)
- Finding good parameter values is a non-trivial problem which typically requires substantial experimentation and experience.
- WalkSAT revised: adding greediness and adaptivity
 Novelty+ and AdaptiveNovelty+ algorithms

・ロト・西ト・山下・山下・山下

I.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Novelty+

- WalkSAT can be made greedier using a history-based variable selection mechanism.
- The age of a variable is the number of local search steps since the variable was last flipped.
- Novelty algorithm (McAllester et al., 1997): After choosing an unsatisfiable clause the variable to be flipped is selected as follows:
 - If the variable with the highest score does not have minimal age among the variables within the same clause, it is always selected.
 - Else it is only selected with probability 1 p, where p is a parameter called noise setting.
 - Otherwise the variable with the next lower score is selected.
 - When sorting variables according to their scores, ties are broken according to decreasing age.
- In Novelty+ (Hoos 1998) a random walk step (with probability wp) is added: with probability 1 wp the variable to be flipped is selected according to the Novelty mechanism and in the other cases a random walk step is performed.

WalkSAT

function WalkSAT(F, p): $t \leftarrow$ initial truth assignment; while flips < max_flips do if t satisfies F then return t else choose a random unsatisfied clause C in F; if some variables in C can be flipped without breaking any presently satisfied clauses, then pick one such variable x at random; else: with probability p, pick a variable x in C unif. at random; with probability (1 - p), do basic GSAT move: find a variable x in C whose flipping causes largest decrease in the number of unsatisfied clauses ; $t \leftarrow (t$ with variable x flipped) end while; return t.

.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Adaptive WalkSat and Adaptive Novelty+

- A suitable value for the noise parameter p is crucial for competitive performance of WalkSAT and its variants.
- Too low noise settings lead to stagnation behaviour and too high settings to long running times.
- Instead of a static setting, a dynamically changing noise setting can be used in the following way:
- Two parameters θ and ϕ are given.
 - At the beginning the search is maximally greedy (p = 0).
 - There is a search stagnation if no improvement in the evaluation function value has been observed over the last $m\theta$ search steps where *m* is the number of clauses in the instance.
 - In this situation the noise value is increased by $p := p + (1 p)\phi$.
 - If there is an improvement in the evaluation function value, then the noise value is decreased by p := p − pφ/2.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

11

Adaptive WalkSat and Adaptive Novelty+

- Notice the asymmetry between increases and decreases in the noise setting.
- Between increases in noise level there is always a phase during which the search progress is monitored without further increasing the noise. No such delay is enforced between successive decreases in noise level.
- When this mechanism of adapting the noise level is applied to WalkSat and Novelty+, we obtain Adaptive WalkSat and Adaptive Novelty+ (Hoos, 2002)
- The performance of the adaptive versions is more robust w.r.t. the settings of θ and φ than the performance of the non-adaptive versions w.r.t. to the settings of *p*.
- ► For example, for Adaptive Novelty+ setting $\theta = 1/6$ and $\phi = 0.2$ seem to lead to robust overall performance (while there appears to be no such setting for *p* in the non-adaptive case).

I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Tools for CSP

- Constraint programming systems offer a rich set of supported constraint types with efficient propagation algorithms and primitives for implementing search.
- Typically the user needs to program, for example, the search algorithm, splitting technique, and heuristic.

See, for example,

http://4c.ucc.ie/~tw/csplib/links.html for available constraint solvers:

CLAIRE, ECLiPse, GNU Prolog, Oz, Sicstus Prolog, ILOG Solver, ...

Tools for SAT

- The development of SAT solvers is strongly driven by SAT competitions (http://www.satcompetition.org/)
- There is a wide range of efficient solvers also available in public domain.
- See for example http://www.satcompetition.org/ for solvers that ranked well in previous SAT competitions. SAT2005:

SatELiteGTI, MiniSAT 1.13, zChaff_rand, HaifaSAT, Vallst, March_dl, kcnf-2004, Dew_Satzla, Jerusat 1.31 B, Hsat1, ranov, g2wsat, VW

SAT-Race 2006:

minisat 2.0, Eureka 2006, Rsat, Cadence MiniSat v1.14, ...

.N. & P.O. Autumn 2006

・ロト・日本・モート ヨー うへの

-79.4201 Search Problems and Algorithms

Linear and Integer Programming

- Linear and Integer Programming can be thought to be a subclass of constraint programming where there are
 - two types of variables: real valued and integer valued
 - only one type of constraint: linear (in)equalities.
- Linear Programming (LP): only real valued variables.
- Integer Programming (IP): only integer variables.
- Mixed Integer Programming (MIP): both integer and real valued variables.

I.N. & P.O. Autumn 2006

Linear and Integer Programming

 Computationally there is a fundamental difference between LP and IP:

LP problems can be solved efficiently (in polynomial time) but IP problems are NP-complete (and all known algorithms have an exponential worst-case running time).

- MIP offers an attractive framework for solving (search and) optimization problems:
 - Continuous variables can be handled efficiently along with discrete variables.
 - Powerful LP solution techniques can be exploited in the IP case through linear relaxation.
 - Bounds on deviation from optimality can be generated even when optimal solutions are not proven.

I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

An Example MIP

 $\min x_2 - x_1$ s.t.

- x_2 is integer

MIP: Basic Concepts

- In a mixed integer program (MIP) variables are partitioned in two sets such that in the other set (call this *I*) each variable is required to take an integer value while the remaining variables can take any real value.
- ▶ Each variable x_i can have a range $I_i \le x_i \le u_i$.
- A linear constraint is an expression of the form

 $a_1x_1+\cdots+a_nx_n=b$

where the relation symbol '=' can also be ' \leq ' or ' \geq '.

- A linear function is an expression of the form $c_1x_1 + \cdots + c_nx_n$
- A MIP consists of (i) the objective of minimizing (or maximizing) a linear function, (ii) a set of linear constraints, (iii) ranges for variables and (iv) a set of integer valued variables.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへで

.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

MIP: Basic Concepts

- We can write a MIP in the matrix form as follows.
- Let *x* be a vector of variables $x = (x_1, \ldots, x_n)$.
- ▶ Variable ranges can be represented by vectors $I = (I_1, ..., I_n)$ and $u = (u_1, ..., u_n)$ such that for all $i, I_i \le x_i \le u_i$, that is, $I \le x \le u$.
- A set of linear constraints Σ_ja_jx_j = b_j can be written in matrix form as Ax = b such that A = (a_{ij}) is a matrix where a_{ij} is the coefficient for variable *j* in the *i*th constraint and b = (b₁,...,b_n).
- A linear objective function Σ_jc_jx_j is written as cx where c = (c₁,...,c_n) is a vector of coefficients.
- Then a MIP can be written as:

min cx

s.t.
$$Ax = b$$

 x_i is integer for all $j \in I$

もって 加ァスポッスポット しゃ

・ロト・日本・ヨト・ヨト ヨー シタマ

I.N. & P.O. Autumn 2006

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

MIP: Basic Concepts

- A feasible solution to a MIP is an assignment of values to the variables in the problem such that the assignment satisfies all the linear constraints and range constraints and for each variable in *I* it assigns an integer value.
- A program is feasible if it has a feasible solution otherwise it is said to be infeasible.
- An optimal solution is a feasible solution that gives the minimal (maximal) value of the objective function among all feasible solutions.
- A program is unbounded (from below) if for all λ ∈ R there is a feasible solution for which the value of the objective function is at most λ.

-79.4201 Search Problems and Algorithms

An Example

• Consider the following MIP $\min 2x_1 + x_2$ s.t.

- ▶ $x_1 = 3.1$, $x_2 = 4$ is a feasible solution
- x₁ = 2, x₂ = 4 is an optimal solution which gives the minimal value (8) for the objective function.
- ► If the objective is min x₁ − x₂, then the problem is unbounded (from below).
- If we change the range for x₁ to be x₁ ≤ 1, the problem becomes infeasible.

・ロト・西ト・ボット・ビー しょうく

```
2
```

-79.4201 Search Problems and Algorithms

.N. & P.O. Autumn 2006

I.N. & P.O. Autumn 2006

Modelling: Logical Constraints

- Consider binary integer variables ($0 \le x_i \le 1$).
- ▶ Disjunction: x_3 has the value of the boolean expression $x_1 \lor x_2$:

$$x_3 \ge x_1$$

$$x_3 \ge x_2$$

$$x_3 \le x_1 + x_2$$

• Conjunction: x_3 has the value of the boolean expression $x_1 \wedge x_2$:

$$x_3 \le x_1$$

 $x_3 \le x_2$
 $x_3 \ge x_1 + x_2 - 1$

Modelling: SET COVER

INSTANCE: A family of sets $F = \{S_1, ..., S_n\}$ of subsets of a finite set U.

QUESTION: Find an *I*-cover of U (a set of *I* sets from F whose union is U) with the smallest number *I* of sets.

- For each set S_i an integer variable x_i such that $0 \le x_i \le 1$
- For each element u of U a constraint

$$a_1x_1+\cdots+a_nx_n\geq 1$$

where the coefficient $a_i = 1$ if $u \in S_i$ and otherwise $a_i = 0$.

• Objective: $\min x_1 + \cdots + x_n$

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Modelling SAT

Given a SAT instance F in CNF, introduce

- For each Boolean variable x in F, a binary integer variable x (0 ≤ x ≤ 1).
- ▶ for each clause $I_i \lor \cdots \lor I_n$ in *F*, a constraint

 $a_1x_1+\cdots+a_nx_n\geq 1-m$

where the coefficient $a_i = 1$ if the literal l_i is positive and otherwise $a_i = -1$ and *m* is the number of negative literals in the clause.

Then F is satisfiable iff the corresponding set of constraints has a feasible solution.

I.N. & P.O. Autumn 2006