
T–79.4201 Search Problems and Algorithms

Lecture 5: Constraint satisfaction: formalisms
and modelling

I When solving a search problem the most efficient solution
methods are typically based on special purpose algorithms.

I In Lectures 3 and 4 important approaches to developing such
algorithms have been discussed.

I However, developing a special purpose algorithm for a given
problem requires typically a substantial amount of expertise and
considerable resources.

I Another approach is to exploit an efficient algorithm already
developed for some problem through reductions.

I.N. & P.O. Autumn 2006 1

T–79.4201 Search Problems and Algorithms

Exploiting Reductions

I Given an efficient algorithm for a problem A we can solve a
problem B by developing a reduction from B to A.

input x =⇒

Algorithm for B:
Reduction

R
R(x)
=⇒

Algorithm
for A

=⇒ Answer

I Constraint satisfaction problems (CSPs) offer attractive target
problems to be used in this way:

I CSPs provide a flexible framework to develop reductions, i.e.,
encodings of problems as CSPs such that a solution to the original
problem can be easily extracted from a solution of the CSP
encoding the problem.

I Constraint programming offers tools to build efficient algorithms for
solving CSPs for a wide range of constraints.

I There are efficient software packages that can be directly used for
solving interesting classes of constraints.

I.N. & P.O. Autumn 2006 2

T–79.4201 Search Problems and Algorithms

Constraints
I Given variables Y := y1, . . . ,yk and domains D1, . . .Dk ,

a constraint C on Y is a subset of D1 ×·· ·×Dk .
I If k = 1, the constraint is called unary and if k = 2, binary.

Example. Consider variables y1,y2 both having the domain
Di = {0,1,2}. Then

NotEq = {(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}

can be taken as a binary constraint on y1,y2 and then we denote it by
NotEq(y1,y2) and if it is on y2,y1, then by NotEq(y2,y1).

I In what follows we use a shorthand notation for constraints by
giving directly the condition on the variables when it is clear how
to interpret the condition on the domain elements.

I Hence, cond(y1, . . . ,yk) on variables y1, . . . ,yk with domains
D1, . . .Dk denotes the constraint

{(d1, . . . ,dk) | di ∈Di for i = 1, . . . ,k and cond(d1, . . . ,dk) holds }

I.N. & P.O. Autumn 2006 3

T–79.4201 Search Problems and Algorithms

Constraints

Example

Condition y1 6= y2 on variables y1,y2 with domains D1,D2 denotes the
constraint

{(d1,d2) | d1 ∈ D1,d2 ∈ D2,d1 6= d2}.

So if y1,y2 both have the domain {0,1,2}, then y1 6= y2 denotes the
constraint NotEq(y1,y2) above.

Example

Condition y1 ≤
y2
2 + 1

4 on y1,y2 both having the domain {0,1,2}
denotes the constraint

{(d1,d2) | d1,d2 ∈{0,1,2},d1 ≤
d2

2
+

1

4
}= {(0,0),(0,1),(0,2),(1,2)}.

I.N. & P.O. Autumn 2006 4

T–79.4201 Search Problems and Algorithms

Constraint Satisfaction Problems (CSPs)

I Given variables x1, . . . ,xn and domains D1, . . .Dn,
a constraint satisfaction problem (CSP):

〈C;x1 ∈ D1, . . . ,xn ∈ Dn〉

where C is a set of constraints each on a subsequence of
x1, . . . ,xn.

Example

〈{NotEq(x1,x2),NotEq(x1,x3),NotEq(x2,x3)},
x1 ∈ {0,1,2},x2 ∈ {0,1,2},x3 ∈ {0,1,2}〉

is a CSP. We often use shorthands for the constrains and write

〈{x1 6= x2,x1 6= x3,x2 6= x3},x1 ∈ {0,1,2},x2 ∈ {0,1,2},x3 ∈ {0,1,2}〉

I.N. & P.O. Autumn 2006 5

T–79.4201 Search Problems and Algorithms

CSPs II

I For a constraint C on variables xi1 , . . . ,xim , an n-tuple
(d1, . . . ,dn) ∈ D1 ×·· ·×Dn satisfies C if (di1 , . . . ,dim) ∈ C

I Example. An n-tuple (1,2, . . . ,n) satisfies the constraint NotEq
on x1,x2 because (1,2) ∈ NotEq but the n-tuple (1,1, . . . ,n) does
not as (1,1) 6∈ NotEq.

I A solution to a CSP 〈C,x1 ∈ D1, . . . ,xn ∈ Dn〉 is an n-tuple
(d1, . . . ,dn) ∈ D1 ×·· ·×Dn that satisfies each constraint C ∈ C.

Example. Consider a CSP

〈{x1 6= x2,x1 6= x3,x2 6= x3},x1 ∈ {0,1,2},x2 ∈ {0,1,2},x3 ∈ {0,1,2}〉

The 3-tuple (0,1,2) is a solution to the CSP as it satisfies all the
constraints but (0,1,1) is not because it does not satisfy the constraint
x2 6= x3 (NotEq(x2,x3)).

I.N. & P.O. Autumn 2006 6

T–79.4201 Search Problems and Algorithms

Example. Graph coloring problem
Given a graph G, the coloring problem can be encoded as a CSP as
follows.

I For each node vi in the graph introduce a variable Vi with the
domain {1, . . . ,n} where n is the number of available colors.

I For each edge (vi ,vj) in the graph introduce a constraint Vi 6= Vj .

I This is a reduction of the coloring problem to a CSP because the
solutions to the CSP correspond exactly to the solutions of the
coloring problem:
a tuple (t1, . . . , tn) satisfying all the constraints gives a valid
coloring of the graph where node vi is colored with color ti .

I.N. & P.O. Autumn 2006 7

T–79.4201 Search Problems and Algorithms

Example: SEND + MORE = MONEY

I Replace each letter by a different digit so that
SEND

+ MORE
MONEY

9567
+ 1085
10652

is a correct sum. The unique solution.

I Variables: S, E, N, D, M, O, R, Y

I Domains: [1..9] for S, M and [0..9] for E, N, D, O, R, Y

I Constraints:

1000 ·S +100 ·E +10 ·N +D
+1000 ·M +100 ·O +10 ·R +E

= 10000 ·M +1000 ·O +100 ·N +10 ·E +Y

x 6= y for every pair of variables x ,y in {S, E, N, D, M, O, R, Y}.

I It is easy to check that the tuple (9,5,6,7,1,0,8,2) satisfies the
constraints, i.e., is a solution to the problem.

I.N. & P.O. Autumn 2006 8

T–79.4201 Search Problems and Algorithms

N Queens
Problem: Place n queens on a n×n chess board so that they do not
attack each other.

I Variables: x1, . . . ,xn (xi gives the position of the queen on ith
column)

I Domains: [1..n] for each xi , i = 1, . . . ,n

I Constraints: for i ∈ [1..n−1] and j ∈ [i +1..n]:
(i) xi 6= xj (rows)
(ii) xi − xj 6= i − j (SW-NE diagonals)
(iii) xi − xj 6= j − i (NW-SE diagonals)

I When n = 10, the n-tuple (3,10,7,4,1,5,2,9,6,8) gives a
solution to the problem.

I.N. & P.O. Autumn 2006 9

T–79.4201 Search Problems and Algorithms

Constrained Optimization Problems

I Given: a CSP P := 〈C;x1 ∈ D1, . . . ,xn ∈ Dn〉 and a function
obj : Sol 7→ R

I (P,obj) is a constrained optimization problem (COP) where the
task is to find a solution d to P for which the value obj(d) is
optimal.

I Example. KNAPSACK: a knapsack of a fixed volume and n
objects, each with a volume and a value. Find a collection of
these objects with maximal total value that fits in the knapsack.

I Representation as a COP:
Given: knapsack volume v and n objects with volumes a1, . . . ,an

and values b1, . . . ,bn.
Variables: x1, . . . ,xn

Domains: {0,1}
Constraint: ∑n

i=1 ai · xi ≤ v ,
Objective function: ∑n

i=1 bi · xi .

I.N. & P.O. Autumn 2006 10

T–79.4201 Search Problems and Algorithms

Solving CSPs

I Constraints have varying computational properties.
I For some classes of constraints there are efficient special

purpose algorithms (domain specific methods/constraint solvers).
Examples

I Linear equations
I Linear programming
I Unification

I For others general methods consisting of
I constraint propagation algorithms and
I search methods

must be used.
I Different encodings of a problem as a CSP utilizing different sets

of constraints can have substantial different computational
properties.

I However, it is not obvious which encodings lead to the best
computational performance.

I.N. & P.O. Autumn 2006 11

T–79.4201 Search Problems and Algorithms

Constraints

I In the course we consider more carefully two classes of
constraints: linear constraints and Boolean constraints.

I Linear constraints (Lectures 7–9) are an example of a class of
constraints which has efficient special purpose algorithms.

I Now we consider Boolean constraints as an example of a class
for which we need to use general methods based on propagation
and search.

I However, boolean constraints are interesting because
I highly efficient general purpose methods are available for solving

Boolean constraints;
I they provide a flexible framework for encoding (modelling) where it

is possible to use combinations of constraints (with efficient
support by solution techniques).

I.N. & P.O. Autumn 2006 12

T–79.4201 Search Problems and Algorithms

Boolean Constraints

I A Boolean constraint C on variables x1, . . . ,xn with the domain
{true , false} can be seen as a Boolean function
fC : {true , false}n −→ {true , false} such that a tuple (t1, . . . , tn)
satisfies the constraint C iff fC(t1, . . . , tn) = true .

I Typically such functions are represented as propositional
formulas.

I Solution methods for Boolean constraints exploit the structure of
the representation of the constraints as formulas.

I.N. & P.O. Autumn 2006 13

T–79.4201 Search Problems and Algorithms

Example: Graph coloring

I Consider the problem of finding a 3-coloring for a graph.
I This can be encoded as a set of Boolean constraints as follows:

I For each vertex v ∈ V , introduce three Boolean variables
v(1),v(2),v(3) (intuition: v(i) is true iff vertex v is colored with
color i).

I For each vertex v ∈ V introduce the constraints

v(1)∨ v(2)∨ v(3)
(v(1) →¬v(2))∧ (v(1) →¬v(3))∧ (v(2) →¬v(3))

I For each edge (v ,u) ∈ E introduce the constraint

(v(1) →¬u(1))∧ (v(2) →¬u(2))∧ (v(3) →¬u(3))

I Now 3-colorings of a graph (V ,E) and solutions to the Boolean
constraints (satisfying truth assignments) correspond:
vertex v colored with color i iff v(i) assigned true in the solution.

I.N. & P.O. Autumn 2006 14

T–79.4201 Search Problems and Algorithms

Propositional formulas

I Syntax (what are well-formed propositional formulas):
Boolean variables (atoms) X = {x1,x2, . . .}
Boolean connectives ∨,∧,¬

I The set of (propositional) formulas is the smallest set such that all
Boolean variables are formulas and if φ1 and φ2 are formulas, so
are ¬φ1, (φ1 ∧φ2), and (φ1 ∨φ2).
For example, ((x1 ∨ x2)∧¬x3) is a formula but ((x1 ∨ x2)¬x3) is
not.

I A formula of the form xi or ¬xi is called a literal where xi is a
Boolean variable.

I We employ usual shorthands:
φ1 → φ2: ¬φ1 ∨φ2

φ1 ↔ φ2: (¬φ1 ∨φ2)∧ (¬φ2 ∨φ1)
φ1 ⊕φ2: (¬φ1 ∧φ2)∨ (φ1 ∧¬φ2)

I.N. & P.O. Autumn 2006 15

T–79.4201 Search Problems and Algorithms

Semantics
I Atomic proposition (Boolean variables) are either true or false

and this induces a truth value for any formula as follows.
I A truth assignment T is mapping from a finite subset X ′ ⊂ X to

the set of truth values {true , false}.
I Consider a truth assignment T : X ′ −→ {true , false} which is

appropriate to φ, i.e., X(φ) ⊆ X ′ where X(φ) be the set of
Boolean variables appearing in φ.

I T |= φ (T satisfies φ) is defined inductively as follows:
If φ is a variable, then T |= φ iff T (φ) = true .
If φ = ¬φ1, then T |= φ iff T 6|= φ1

If φ = φ1 ∧φ2, then T |= φ iff T |= φ1 and T |= φ2

If φ = φ1 ∨φ2, then T |= φ iff T |= φ1 or T |= φ2

Example

Let T (x1) = true , T (x2) = false .
Then T |= x1 ∨ x2 but T 6|= (x1 ∨¬x2)∧ (¬x1 ∧ x2)

I.N. & P.O. Autumn 2006 16

T–79.4201 Search Problems and Algorithms

Representing Boolean Functions
I A propositional formula φ with variables x1, . . . ,xn expresses a

n-ary Boolean function f if for any n-tuple of truth values
t = (t1, . . . , tn), f (t) = true if T |= φ and f (t) = false if T 6|= φ
where T (xi) = ti , i = 1, . . . ,n.

Proposition. Any n-ary Boolean function f can be expressed as a
propositional formula φf involving variables x1, . . . ,xn.

I The idea: model each case of the
function having value true as a
disjunction of conjunctions.

I Let F be the set of all n-tuples
t = (t1, . . . , tn) with f (t) = true .
For each t, let Dt be a conjunction of
literals xi if ti = true and ¬xi if
ti = false .

I Let φf =
W

t∈F Dt

Note that φf is big in the worst case:

Example.
x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 0

φf =
(¬x1 ∧ x2)∨
(x1 ∧¬x2)

I.N. & P.O. Autumn 2006 17

T–79.4201 Search Problems and Algorithms

Logical Equivalence
Definition

Formulas φ1 and φ2 are equivalent (φ1 ≡ φ2) iff for all truth
assignments T appropriate to both of them, T |= φ1 iff T |= φ2.

Example

(φ1 ∨φ2) ≡ (φ2 ∨φ1)
((φ1 ∧φ2)∧φ3) ≡ (φ1 ∧ (φ2 ∧φ3))
¬¬φ ≡ φ
((φ1 ∧φ2)∨φ3) ≡ ((φ1 ∨φ3)∧ (φ2 ∨φ3))
¬(φ1 ∧φ2) ≡ (¬φ1 ∨¬φ2)
(φ1 ∨φ1) ≡ φ1

I Simplified notation:
(((x1 ∨¬x3)∨ x2)∨ x4 ∨ (x2 ∨ x5)) is written as
x1 ∨¬x3 ∨ x2 ∨ x4 ∨ x2 ∨ x5 or x1 ∨¬x3 ∨ x2 ∨ x4 ∨ x5

I
Wn

i=1 ϕi stands for ϕ1 ∨·· ·∨ϕn
Vn

i=1 ϕi stands for ϕ1 ∧·· ·∧ϕn

I.N. & P.O. Autumn 2006 18

T–79.4201 Search Problems and Algorithms

Normal Forms

I Many solvers for Boolean constraints require that the constraints
are represented in a normal form (typically in conjunctive normal
form).

Proposition. Every propositional formula is equivalent to one in
conjunctive (disjunctive) normal form.

CNF: (l11 ∨·· ·∨ l1n1)∧·· ·∧ (lm1 ∨·· ·∨ lmnm)
DNF: (l11 ∧·· ·∧ l1n1)∨·· ·∨ (lm1 ∧·· ·∧ lmnm)
where each lij is a literal (Boolean variable or its negation).

A disjunction l1 ∨·· ·∨ ln is called a clause.

A conjunction l1 ∧·· ·∧ ln is called an implicant.

I.N. & P.O. Autumn 2006 19

T–79.4201 Search Problems and Algorithms

Normal Form Transformations
CNF/DNF transformation:

1. remove ↔ and →:
α ↔ β ; (¬α∨β)∧ (¬β∨α) (1)
α → β ; ¬α∨β (2)

2. Push negations in front of Boolean variables:
¬¬α ; α (3)
¬(α∨β) ; ¬α∧¬β (4)
¬(α∧β) ; ¬α∨¬β (5)

3. CNF: move ∧ connectives outside ∨ connectives:
α∨ (β∧ γ) ; (α∨β)∧ (α∨ γ) (6)
(α∧β)∨ γ ; (α∨ γ)∧ (β∨ γ) (7)

DNF: move ∨ connectives outside ∧ connectives:
α∧ (β∨ γ) ; (α∧β)∨ (α∧ γ) (8)
(α∨β)∧ γ ; (α∧ γ)∨ (β∧ γ) (9)

I.N. & P.O. Autumn 2006 20

T–79.4201 Search Problems and Algorithms

Example

Transform (A∨B) → (B ↔ C) to CNF.

(A∨B) → (B ↔ C) (1,2)
¬(A∨B)∨ ((¬B∨C)∧ (¬C ∨B)) (4)
(¬A∧¬B)∨ ((¬B∨C)∧ (¬C ∨B)) (7)

(¬A∨ ((¬B∨C)∧ (¬C ∨B)))∧ (¬B∨ ((¬B∨C)∧ (¬C ∨B))) (6)
((¬A∨ (¬B∨C))∧ (¬A∨ (¬C ∨B)))∧ (¬B∨ ((¬B∨C)∧ (¬C ∨B))) (6)
((¬A∨ (¬B∨C))∧ (¬A∨ (¬C ∨B)))∧ ((¬B∨ (¬B∨C))∧ (¬B∨ (¬C ∨B)))
(¬A∨¬B∨C)∧ (¬A∨¬C ∨B)∧ (¬B∨¬B∨C)∧ (¬B∨¬C ∨B)

I We can assume that normal forms do not have repeated
clauses/implicants or repeated literals in clauses/implicants
(for example (¬B∨¬B∨C) ≡ (¬B∨C)).

I Normal form can be exponentially bigger than the original formula
in the worst case.

I.N. & P.O. Autumn 2006 21

T–79.4201 Search Problems and Algorithms

Boolean Circuits

I Normal forms are often quite an unnatural way of encoding
problems and it is more convenient to use full propositional logic.

I In many applications the encoding is of considerable size and
different parts of the encoding have a substantial amount of
common substructure.

I Boolean circuits offer an attractive formalism for representing the
required Boolean functions where compactness is enhanced by
sharing common substructure.

I.N. & P.O. Autumn 2006 22

T–79.4201 Search Problems and Algorithms

Boolean Circuits
I A Boolean circuit C is a 4-tuple (V ,E ,s,α) where
I (V ,E) is an acyclic graph whose nodes are called gates. The

nodes are divided into three categories:
I output gates (outdegree 0)
I intermediate gates
I input gates (indgree 0)

I s assigns a Boolean function s(g) to each intermediate and
output gate g of appropriate arity corresponding to the indegree
of the gate.

I α assigns truth values to some gates.
I Typical Boolean functions used

in the gates are
and/n (n-input and function),
or/n,not,equiv/2,xor/2, . . .

For example

x1 x2 equiv/2
0 0 1
0 1 0
1 0 0
1 1 1

I.N. & P.O. Autumn 2006 23

T–79.4201 Search Problems and Algorithms

Example. Boolean Circuit

s(v1) = and/2
s(v2) = or/3
s(v2) = equiv/2
α(v4) = false

v1 is the output gate of the circuit
v4,v5,v6 are the input gates

I.N. & P.O. Autumn 2006 24

T–79.4201 Search Problems and Algorithms

Boolean Circuits—Semantics

I For a circuit a truth assignment T : X(C) −→ {true , false} gives
a truth assignment to each gate in X(C) where X(C) is the set of
input gates of C.

I This defines a truth value T (g) for each gate g inductively when
the gates are ordered topologically in a sequence so that no gate
appears in the sequence before its input gates (this is always
possible because the circuit is acyclic):

I If g ∈ X(C), then the truth assignment T (g) gives the truth value.
I Otherwise T (g) = f (T (g1), . . . ,T (gn)) where (g1,g), . . . and

(gn,g) are the edges entering g and f is the Boolean function
s(g) associated to g.

Example. For the previous example circuit C, X(C) = {v4,v5,v6}.
For a truth assignment T (v4) = T (v5) = T (v6) = false ,
T (v3) = equiv(false , false) = true ,T (v2) = false ,T (v1) = false .

I.N. & P.O. Autumn 2006 25

T–79.4201 Search Problems and Algorithms

Circuit Satisfiability Problem

I An interesting computational (search) problem related to circuits
is the circuit satisfiability problem.

I Given a Boolean circuit (V ,E ,s,α) we say a truth assignment T
satisfies the circuit if it satisfies the constraints α, i.e., for each
gate g for which α gives a truth value, α(g) = T (g) holds.

I CIRCUIT SAT problem: Given a Boolean circuit find a truth
assignment T that satisfies the circuit.

Example. Consider the circuit with constraints
α(v4) = false , α(v1) = true .
This circuit has a satisfying truth assignment
T (v4) = false ,T (v5) = T (v6) = true .
If the constraints are α(v2) = false , α(v1) =
true , the circuit is unsatisfiable.

I.N. & P.O. Autumn 2006 26

T–79.4201 Search Problems and Algorithms

Boolean Circuits vs. Propositional Formulas

I For each propositional formulae φ, there is a corresponding
Boolean circuit Cφ such that for any T appropriate for both,
T (gφ) = true iff T |= φ for an output gate gφ of Cφ .
Idea: just introduce a new gate for each subexpression.

(a∨b)∧ (¬a∨b)∧
(a∨¬b)∧ (¬a∨¬b)

or or or

and

or

not not

ba
c d

fe g h

v

I For each Boolean circuit C, there is a corresponding formula φC .

I Notice that Boolean circuits allow shared subexpressions but
formulas do not.
For instance, in the circuit above gates a,b,c,d .

I.N. & P.O. Autumn 2006 27

T–79.4201 Search Problems and Algorithms

Circuits Compute Boolean Functions

I A Boolean circuit with output gate g and variables x1, . . . ,xn

computes an n-ary Boolean function f if for any n-tuple of truth
values t = (t1, . . . , tn), f (t) = T (g) where T (xi) = ti , i = 1, . . . ,n.

I Any n-ary Boolean function f can be computed by a Boolean
circuit involving variables x1, . . . ,xn.

I Not every Boolean function can be computed using a concise
circuit.

Theorem

For any n ≥ 2 there is an n-ary Boolean function f such that no
Boolean circuit with 2n

2n or fewer gates can compute it.

I.N. & P.O. Autumn 2006 28

T–79.4201 Search Problems and Algorithms

Boolean Circuits as Equation Systems
A Boolean circuit can be written as a system of equations.

or or or

and

or

not not

ba
c d

fe g h

v v = and(e, f ,g,h)
e = or(a,b)
f = or(b,c)
g = or(a,d)
h = or(c,d)
c = not(a)
d = not(b)

I.N. & P.O. Autumn 2006 29

T–79.4201 Search Problems and Algorithms

Boolean Modelling

I Propositional formulas/Boolean circuits offer a natural way of
modelling many interesting Boolean functions.

I Example. IF-THEN-ELSE ite(a,b,c) (if a then b else c.).
As a formula:
ite(a,b,c) ≡ (a∧b)∨ (¬a∧ c)
As a circuit:
ite = or(i1, i2)
i1 = and(a,b)
i2 = and(a1,c)
a1 = not(a)

I Given gates a,b,c, ite(a,b,c) can be thought as a shorthand for
a subcircuit given above.

I In the bczchaff tool used in the course ite(a,b,c) is provided as
a primitive gate functions.

I.N. & P.O. Autumn 2006 30

T–79.4201 Search Problems and Algorithms

Example

Binary adder. Given input bits a, b and c
compute output bits o2o1 which give the sum of a, b, and c in binary.

As a formula:

o1 ≡ ((a⊕b)⊕ c)
o2 ≡ (a∧b)∨ (c∧ (a⊕b)

As a circuit:
o1 = xor(x ,c)
o2 = or(l, r)
l = and(a,b)
r = and(c,x)
x = xor(a,b)

I.N. & P.O. Autumn 2006 31

T–79.4201 Search Problems and Algorithms

Encoding Problems Using Circuits

I Circuits can be used to encode problems in a structured way.

I Example. Given three bits a,b,c find their values such that
if at least two of them are ones then either a or b is one else a or
c is one.

I We use IF-THEN-ELSE and adder circuits to encode this as a
CIRCUIT SAT problem as follows:
p = ite(o2,x ,p1)
p1 = or(a,c)
% full adder; gate o1 omitted
o2 = or(l, r)
l = and(a,b)
r = and(c,x)
x = xor(a,b)

I Now each satisfying truth assignment for the circuit with
α(p) = true gives a solution to the problem.

I.N. & P.O. Autumn 2006 32

T–79.4201 Search Problems and Algorithms

Example. Reachability
Given a graph G = ({1, . . . ,n},E), constructs a circuit R(G) such that
R(G) is satisfiable iff there is a path from 1 to n in G.

I The gates of R(G) are of the form
gijk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n
hijk with 1 ≤ i, j,k ≤ n

I gijk is true : there is a path in G from i to j not using any
intermediate node bigger than k .

I hijk is true : there is a path in G from i to j not using any
intermediate node bigger than k but using k .

I.N. & P.O. Autumn 2006 33

T–79.4201 Search Problems and Algorithms

Example—cont’d
R(G) is the following circuit:

I For k = 0, gijk is an input gate.

I For k = 1,2, . . . ,n:
hijk = and(gik(k−1),gkj(k−1))
gijk = or(gij(k−1),hijk)

I g1nn is the output gate of R(G).

I Constraints α:
For the output gate: α(g1nn) = true
For the input gates: α(gij0) = true if i = j or (i, j) is an edge in G
else α(gij0) = false .

I.N. & P.O. Autumn 2006 34

T–79.4201 Search Problems and Algorithms

Example—cont’d

I Because of the constraints α on input gates there is at most one
possible truth assignment T .

I It can be shown by induction on k = 0,1, . . . ,n that in this
assignment the truth values of the gates correspond to their given
intuitive readings.

I From this it follows:
R(G) is satisfiable iff T (g1nn) = true in the truth assignment iff
there is a path from 1 to n in G without any intermediate nodes
bigger than n iff there is a path from 1 to n in G.

I.N. & P.O. Autumn 2006 35

T–79.4201 Search Problems and Algorithms

Example. Reachability with choices

I Consider now a more challenging (search) problem.

I Given a graph G = ({1, . . . ,n},E) and a set of edges
E ′ ⊆ {1, . . . ,n}×{1, . . . ,n}, is there a subset S ⊆ E ′ such that
there is a path from 1 to n in G′ = ({1, . . . ,n},E ∪S) but not from
1 to n−1.

I To solve this problem we can use the circuit R(G) and modify it
as follows:

I remove constraints α(gi,j,0) = t for each edge (i, j) ∈ E ′ and
I add the constraint α(g1,n−1,n) = false

I Now the modified R(G) is satisfiable iff there is a set of edges S
such that there is a path from 1 to n but not from 1 to n−1.

I Moreover, the set of edges S is given by the gates gi,j,0 true in a
satisfying truth assignment where (i, j) ∈ E ′.

I.N. & P.O. Autumn 2006 36

T–79.4201 Search Problems and Algorithms

From Circuits to CNF
I Translating Boolean Circuits to an equivalent CNF formula can

lead to exponential blow-up in the size of the formula.
I Often exact equivalence is not necessary but auxiliary variables

can be used as long as at least satisfiability is preserved.
I Then a linear size CNF representation can be obtained using

co-called Tseitin’s translation where given a Boolean circuit C the
corresponding CNF formula is obtained as follows

I a new variable is introduced to each gate of the circuit,
I the set of clauses in the normal form consists of the gate equation

is written in a clausal form for each intermediate and output gate
and the corresponding literal for each gate g with a constraint
α(g) = t .

I This transformation preserves satisfiability and even truth
assignments in the following sense:
if C is a Boolean circuit and Σ its Tseitin translation, then for
every truth assignment T of C there is a satisfying truth
assignment T ′ of Σ which agrees with T and vice versa.

I.N. & P.O. Autumn 2006 37

T–79.4201 Search Problems and Algorithms

From Circuits to CNF II
Example.

Gate equations
for non-input gates:
v1 ↔ (v2 ∧ v3)
v2 ↔ (v4 ∨ v5 ∨ v6)
v3 ↔ (v5 ↔ v6)

In CNF:

(¬v1 ∨ v2)∧ (¬v1 ∨ v3)∧ (v1 ∨¬v2 ∨¬v3)∧
(v2 ∨¬v4)∧ (v2 ∨¬v5)∧ (v2 ∨¬v6)∧ (¬v2 ∨ v4 ∨ v5 ∨ v6)∧

(v3∨v5∨v6)∧ (v3∨¬v5∨¬v6)∧ (¬v3∨v5∨¬v6)∧ (¬v3∨¬v5∨v6)∧
(¬v4) [for the constraint α(v4) = false]

I.N. & P.O. Autumn 2006 38

