and modelling

Exploiting Reductions

Given an efficient algorithm for a problem A we can solve a problem B by developing a reduction from B to A.

- Constraint satisfaction problems (CSPs) offer attractive target problems to be used in this way:
 - CSPs provide a flexible framework to develop reductions, i.e., encodings of problems as CSPs such that a solution to the original problem can be easily extracted from a solution of the CSP encoding the problem.
 - Constraint programming offers tools to build efficient algorithms for solving CSPs for a wide range of constraints.
 - There are efficient software packages that can be directly used for solving interesting classes of constraints.

Condition $y_1 \neq y_2$ on variables y_1, y_2 with domains D_1, D_2 denotes the

 $\{(d_1, d_2) \mid d_1 \in D_1, d_2 \in D_2, d_1 \neq d_2\}.$

So if y_1, y_2 both have the domain $\{0, 1, 2\}$, then $y_1 \neq y_2$ denotes the

Condition $y_1 \leq \frac{y_2}{2} + \frac{1}{4}$ on y_1, y_2 both having the domain $\{0, 1, 2\}$

 $\{(d_1, d_2) \mid d_1, d_2 \in \{0, 1, 2\}, d_1 \leq \frac{d_2}{2} + \frac{1}{4}\} = \{(0, 0), (0, 1), (0, 2), (1, 2)\}.$

.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Constraints

constraint $NotEq(y_1, y_2)$ above.

denotes the constraint

Example

constraint

Example

I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Constraints

Given variables Y := y₁,..., y_k and domains D₁,...D_k, a constraint C on Y is a subset of D₁ ×···× D_k.

Lecture 5: Constraint satisfaction: formalisms

When solving a search problem the most efficient solution

algorithms have been discussed.

considerable resources.

methods are typically based on special purpose algorithms.

In Lectures 3 and 4 important approaches to developing such

However, developing a special purpose algorithm for a given problem requires typically a substantial amount of expertise and

Another approach is to exploit an efficient algorithm already

▲□▶▲□▶▲目▶▲目▶ 目 のへで

developed for some problem through reductions.

• If k = 1, the constraint is called unary and if k = 2, binary.

Example. Consider variables y_1, y_2 both having the domain $D_i = \{0, 1, 2\}$. Then

 $NotEq = \{(0,1), (0,2), (1,0), (1,2), (2,0), (2,1)\}$

can be taken as a binary constraint on y_1, y_2 and then we denote it by $NotEq(y_1, y_2)$ and if it is on y_2, y_1 , then by $NotEq(y_2, y_1)$.

- In what follows we use a shorthand notation for constraints by giving directly the condition on the variables when it is clear how to interpret the condition on the domain elements.
- Hence, cond(y₁,...,y_k) on variables y₁,..., y_k with domains D₁,...D_k denotes the constraint

 $\{(d_1,\ldots,d_k) \mid d_i \in D_i \text{ for } i=1,\ldots,k \text{ and } cond(d_1,\ldots,d_k) \text{ holds } \}$

Constraint Satisfaction Problems (CSPs)

Given variables x₁,..., x_n and domains D₁,...D_n, a constraint satisfaction problem (CSP):

$$\langle \mathbf{C}; \mathbf{x}_1 \in D_1, \ldots, \mathbf{x}_n \in D_n \rangle$$

where **C** is a set of constraints each on a subsequence of x_1, \ldots, x_n .

Example

 $\langle \{ NotEq(x_1, x_2), NotEq(x_1, x_3), NotEq(x_2, x_3) \}, \\ x_1 \in \{0, 1, 2\}, x_2 \in \{0, 1, 2\}, x_3 \in \{0, 1, 2\} \rangle$

is a CSP. We often use shorthands for the constrains and write

 $\langle \{x_1 \neq x_2, x_1 \neq x_3, x_2 \neq x_3\}, x_1 \in \{0, 1, 2\}, x_2 \in \{0, 1, 2\}, x_3 \in \{0, 1, 2\} \rangle$

I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Example. Graph coloring problem

Given a graph G, the coloring problem can be encoded as a CSP as follows.

- For each node v_i in the graph introduce a variable V_i with the domain {1,..., n} where n is the number of available colors.
- ▶ For each edge (v_i, v_j) in the graph introduce a constraint $V_i \neq V_j$.
- This is a reduction of the coloring problem to a CSP because the solutions to the CSP correspond exactly to the solutions of the coloring problem:

a tuple $(t_1, ..., t_n)$ satisfying all the constraints gives a valid coloring of the graph where node v_i is colored with color t_i .

CSPs II

- ► For a constraint *C* on variables $x_{i_1}, ..., x_{i_m}$, an n-tuple $(d_1, ..., d_n) \in D_1 \times \cdots \times D_n$ satisfies *C* if $(d_{i_1}, ..., d_{i_m}) \in C$
- Example. An n-tuple (1,2,...,n) satisfies the constraint NotEq on x₁, x₂ because (1,2) ∈ NotEq but the n-tuple (1,1,...,n) does not as (1,1) ∉ NotEq.
- A solution to a CSP (C, x₁ ∈ D₁,..., x_n ∈ D_n) is an n-tuple (d₁,...,d_n) ∈ D₁ ×···× D_n that satisfies each constraint C ∈ C.

Example. Consider a CSP

 $\langle \{x_1 \neq x_2, x_1 \neq x_3, x_2 \neq x_3\}, x_1 \in \{0, 1, 2\}, x_2 \in \{0, 1, 2\}, x_3 \in \{0, 1, 2\} \rangle$ The 3-tuple (0, 1, 2) is a solution to the CSP as it satisfies all the constraints but (0, 1, 1) is not because it does not satisfy the constraint $x_2 \neq x_3$ (*NotEq*(x_2, x_3)).

.N. & P.O. Autumn 2006

T-79.4201 Search Problems and Algorithms

Example: SEND + MORE = MONEY

Replace each letter by a different digit so that

SEND			9567
+ MORE			+ 1085
MONEY		-	10652
is a correct	sum.	The unique	e solution.

- Variables: S, E, N, D, M, O, R, Y
- Domains: [1..9] for S, M and [0..9] for E, N, D, O, R, Y
- Constraints:

 $1000 \cdot S + 100 \cdot E + 10 \cdot N + D$ $+1000 \cdot M + 100 \cdot O + 10 \cdot R + E$ $= 10000 \cdot M + 1000 \cdot O + 100 \cdot N + 10 \cdot E + Y$

 $x \neq y$ for every pair of variables x, y in {S, E, N, D, M, O, R, Y}.

It is easy to check that the tuple (9,5,6,7,1,0,8,2) satisfies the constraints, i.e., is a solution to the problem.

・ロト・1回ト・1回ト・回・ 回・ のへの

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

I.N. & P.O. Autumn 2006

・ロト・日本・モート・モー シック

N Queens

Problem: Place *n* queens on a $n \times n$ chess board so that they do not attack each other.

- Variables: x₁,..., x_n (x_i gives the position of the queen on ith column)
- ▶ Domains: [1..n] for each x_i , i = 1, ..., n
- Constraints: for *i* ∈ [1..*n*−1] and *j* ∈ [*i*+1..*n*]:
 (i) *x_i* ≠ *x_j* (rows)
 (ii) *x_i* − *x_j* ≠ *i*−*j* (SW-NE diagonals)
 (iii) *x_i* − *x_i* ≠ *j*−*i* (NW-SE diagonals)
- When n = 10, the n-tuple (3, 10, 7, 4, 1, 5, 2, 9, 6, 8) gives a solution to the problem.

・ロト・日本・モト・モー しょうくい

I.N. & P.O. Autumn 2006

F-79.4201 Search Problems and Algorithms

Solving CSPs

- Constraints have varying computational properties.
- For some classes of constraints there are efficient special purpose algorithms (domain specific methods/constraint solvers).
 Examples
 - Linear equations
 - Linear programming
 - Unification
- For others general methods consisting of
 - constraint propagation algorithms and
 - search methods

must be used.

- Different encodings of a problem as a CSP utilizing different sets of constraints can have substantial different computational properties.
- However, it is not obvious which encodings lead to the best computational performance.

・ロト・4回ト・4回ト・回 めんの

11

-79.4201 Search Problems and Algorithms

.N. & P.O. Autumn 2006

Constraints

- In the course we consider more carefully two classes of constraints: linear constraints and Boolean constraints.
- Linear constraints (Lectures 7–9) are an example of a class of constraints which has efficient special purpose algorithms.
- Now we consider Boolean constraints as an example of a class for which we need to use general methods based on propagation and search.
- However, boolean constraints are interesting because
 - highly efficient general purpose methods are available for solving Boolean constraints;
 - they provide a flexible framework for encoding (modelling) where it is possible to use combinations of constraints (with efficient support by solution techniques).

・ロト・日本・ヨト・ヨト ヨー りへで

Constrained Optimization Problems

- ▶ Given: a CSP $P := \langle \mathbf{C}; x_1 \in D_1, \dots, x_n \in D_n \rangle$ and a function *obj* : Sol $\mapsto \mathbb{R}$
- (P, obj) is a constrained optimization problem (COP) where the task is to find a solution d to P for which the value obj(d) is optimal.
- Example. KNAPSACK: a knapsack of a fixed volume and n objects, each with a volume and a value. Find a collection of these objects with maximal total value that fits in the knapsack.
- Representation as a COP: Given: knapsack volume v and n objects with volumes a₁,..., a_n

and values b_1, \ldots, b_n . Variables: x_1, \ldots, x_n Domains: $\{0, 1\}$

Constraint: $\sum_{i=1}^{n} a_i \cdot x_i \leq v$, Objective function: $\sum_{i=1}^{n} b_i \cdot x_i$.

Boolean Constraints

► A Boolean constraint *C* on variables $x_1, ..., x_n$ with the domain {true, false} can be seen as a Boolean function $f_C : {true, false}^n \longrightarrow {true, false}$ such that a tuple $(t_1, ..., t_n)$

satisfies the constraint *C* iff $f_C(t_1, \ldots, t_n) =$ **true**.

- Typically such functions are represented as propositional formulas.
- Solution methods for Boolean constraints exploit the structure of the representation of the constraints as formulas.

Example: Graph coloring

- Consider the problem of finding a 3-coloring for a graph.
- This can be encoded as a set of Boolean constraints as follows:
 - For each vertex v ∈ V, introduce three Boolean variables v(1), v(2), v(3) (intuition: v(i) is true iff vertex v is colored with color i).
 - For each vertex $v \in V$ introduce the constraints

$$egin{aligned} & v(1) ee v(2) ee v(3) \ & (v(1)
ightarrow
eg v(2)) \land (v(1)
ightarrow
eg v(3)) \land (v(2)
ightarrow
eg v(3)) \land (v(3)
ightarrow
eg v(3)) \land$$

For each edge $(v, u) \in E$ introduce the constraint

 $(v(1) \rightarrow \neg u(1)) \land (v(2) \rightarrow \neg u(2)) \land (v(3) \rightarrow \neg u(3))$

Now 3-colorings of a graph (V, E) and solutions to the Boolean constraints (satisfying truth assignments) correspond: vertex v colored with color i iff v(i) assigned true in the solution.

Atomic proposition (Boolean variables) are either true or false

• A truth assignment T is mapping from a finite subset $X' \subset X$ to

• Consider a truth assignment $T: X' \longrightarrow \{$ true, false $\}$ which is

appropriate to ϕ , i.e., $X(\phi) \subseteq X'$ where $X(\phi)$ be the set of

• $T \models \phi$ (*T* satisfies ϕ) is defined inductively as follows:

If $\phi = \phi_1 \land \phi_2$, then $T \models \phi$ iff $T \models \phi_1$ and $T \models \phi_2$ If $\phi = \phi_1 \lor \phi_2$, then $T \models \phi$ iff $T \models \phi_1$ or $T \models \phi_2$

If ϕ is a variable, then $T \models \phi$ iff $T(\phi) =$ true.

Then $T \models x_1 \lor x_2$ but $T \not\models (x_1 \lor \neg x_2) \land (\neg x_1 \land x_2)$

and this induces a truth value for any formula as follows.

the set of truth values {**true**, **false**}.

Boolean variables appearing in ϕ .

If $\phi = \neg \phi_1$, then $T \models \phi$ iff $T \not\models \phi_1$

Let $T(x_1) =$ true, $T(x_2) =$ false.

```
・ロト・日本・小川・ 山下・ 山下・ 山下・ 山下・ 山下・ しょう
```

```
14
```

.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms Semantics

-79.4201 Search Problems and Algorithms

I.N. & P.O. Autumn 2006

Descent the state

Propositional formulas

- Syntax (what are well-formed propositional formulas): Boolean variables (atoms) X = {x₁, x₂,...} Boolean connectives ∨, ∧, ¬
- The set of (propositional) formulas is the smallest set such that all Boolean variables are formulas and if φ₁ and φ₂ are formulas, so are ¬φ₁, (φ₁ ∧ φ₂), and (φ₁ ∨ φ₂).
 For example, ((x₁ ∨ x₂) ∧ ¬x₃) is a formula but ((x₁ ∨ x₂)¬x₃) is not.
- A formula of the form x_i or ¬x_i is called a literal where x_i is a Boolean variable.
- ► We employ usual shorthands:

 $\begin{array}{l} \varphi_1 \rightarrow \varphi_2: \neg \varphi_1 \lor \varphi_2 \\ \varphi_1 \leftrightarrow \varphi_2: (\neg \varphi_1 \lor \varphi_2) \land (\neg \varphi_2 \lor \varphi_1) \\ \varphi_1 \oplus \varphi_2: (\neg \varphi_1 \land \varphi_2) \lor (\varphi_1 \land \neg \varphi_2) \end{array}$

▲□▶▲圖▶▲필▶▲필▶ ■ 少への

▲□▶▲□▶▲目▶▲目▶ 目 のへで

.N. & P.O. Autumn 2006

Example

16

Representing Boolean Functions

A propositional formula ϕ with variables x_1, \dots, x_n expresses a *n*-ary Boolean function *f* if for any *n*-tuple of truth values $\mathbf{t} = (t_1, \dots, t_n), f(\mathbf{t}) = \mathbf{true}$ if $T \models \phi$ and $f(\mathbf{t}) = \mathbf{false}$ if $T \not\models \phi$ where $T(x_i) = t_i, i = 1, \dots, n$.

Proposition. Any *n*-ary Boolean function *f* can be expressed as a propositional formula ϕ_f involving variables x_1, \ldots, x_n .

I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Normal Forms

Many solvers for Boolean constraints require that the constraints are represented in a normal form (typically in conjunctive normal form).

Proposition. Every propositional formula is equivalent to one in conjunctive (disjunctive) normal form.

 $\begin{array}{l} \mathsf{CNF:} (I_{11} \lor \cdots \lor I_{1n_1}) \land \cdots \land (I_{m1} \lor \cdots \lor I_{mn_m}) \\ \mathsf{DNF:} (I_{11} \land \cdots \land I_{1n_1}) \lor \cdots \lor (I_{m1} \land \cdots \land I_{mn_m}) \end{array}$

where each l_{ij} is a literal (Boolean variable or its negation).

A disjunction $l_1 \vee \cdots \vee l_n$ is called a clause.

A conjunction $I_1 \land \cdots \land I_n$ is called an implicant.

Logical Equivalence

Definition

Formulas ϕ_1 and ϕ_2 are equivalent ($\phi_1 \equiv \phi_2$) iff for all truth assignments T appropriate to both of them, $T \models \phi_1$ iff $T \models \phi_2$.

Example

 $(\phi_1 \lor \phi_2) \equiv (\phi_2 \lor \phi_1)$ $((\phi_1 \land \phi_2) \land \phi_3) \equiv (\phi_1 \land (\phi_2 \land \phi_3))$ $\neg \neg \phi \equiv \phi$ $((\phi_1 \land \phi_2) \lor \phi_3) \equiv ((\phi_1 \lor \phi_3) \land (\phi_2 \lor \phi_3))$ $\neg (\phi_1 \land \phi_2) \equiv (\neg \phi_1 \lor \neg \phi_2)$ $(\phi_1 \lor \phi_1) \equiv \phi_1$ • Simplified notation: $(((x_1 \lor \neg x_3) \lor x_2) \lor x_4 \lor (x_2 \lor x_5)) \text{ is written as}$ $x_1 \lor \neg x_3 \lor x_2 \lor x_4 \lor x_2 \lor x_5 \quad \text{or} \quad x_1 \lor \neg x_3 \lor x_2 \lor x_4 \lor x_5$ $\bigvee_{i=1}^{n} \phi_i \text{ stands for } \phi_1 \lor \cdots \lor \phi_n$

.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Normal Form Transformations

CNF/DNF transformation:

- 1. remove \leftrightarrow and \rightarrow : $\alpha \leftrightarrow \beta \quad \rightsquigarrow \quad (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha) \quad (1)$
 - $\alpha \rightarrow \beta \quad \rightsquigarrow \quad \neg \alpha \lor \beta$ (2)
- 2. Push negations in front of Boolean variables:
 - $\begin{array}{cccc} \neg \neg \alpha & \rightsquigarrow & \alpha & (3) \\ \neg (\alpha \lor \beta) & \rightsquigarrow & \neg \alpha \land \neg \beta & (4) \\ \neg (\alpha \land \beta) & \rightsquigarrow & \neg \alpha \lor \neg \beta & (5) \end{array}$
- 3. CNF: move \land connectives outside \lor connectives: $\alpha \lor (\beta \land \gamma) \rightsquigarrow (\alpha \lor \beta) \land (\alpha \lor \gamma)$ (6) $(\alpha \land \beta) \lor \gamma \rightsquigarrow (\alpha \lor \gamma) \land (\beta \lor \gamma)$ (7) DNF: move \lor connectives outside \land connectives: $\alpha \land (\beta \lor \gamma) \rightsquigarrow (\alpha \land \beta) \lor (\alpha \land \gamma)$ (8) $(\alpha \lor \beta) \land \gamma \rightsquigarrow (\alpha \land \gamma) \lor (\beta \land \gamma)$ (9)

I.N. & P.O. Autumn 2006

Example

Transform $(A \lor B) \rightarrow (B \leftrightarrow C)$ to CNF. $(A \lor B) \rightarrow (B \leftrightarrow C)$ (1,2) $\neg (A \lor B) \lor ((\neg B \lor C) \land (\neg C \lor B))$ (4) $(\neg A \land \neg B) \lor ((\neg B \lor C) \land (\neg C \lor B))$ (7) $(\neg A \lor ((\neg B \lor C) \land (\neg C \lor B))) \land (\neg B \lor ((\neg B \lor C) \land (\neg C \lor B))) (6)$ $((\neg A \lor (\neg B \lor C)) \land (\neg A \lor (\neg C \lor B))) \land (\neg B \lor ((\neg B \lor C) \land (\neg C \lor B)))$ (6) $((\neg A \lor (\neg B \lor C)) \land (\neg A \lor (\neg C \lor B))) \land ((\neg B \lor (\neg B \lor C)) \land (\neg B \lor (\neg C \lor B)))$ $(\neg A \lor \neg B \lor C) \land (\neg A \lor \neg C \lor B) \land (\neg B \lor \neg B \lor C) \land (\neg B \lor \neg C \lor B)$

- We can assume that normal forms do not have repeated clauses/implicants or repeated literals in clauses/implicants (for example $(\neg B \lor \neg B \lor C) \equiv (\neg B \lor C)$).
- Normal form can be exponentially bigger than the original formula in the worst case.

I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Boolean Circuits

- ► A Boolean circuit C is a 4-tuple (V, E, s, α) where
- (V, E) is an acyclic graph whose nodes are called gates. The nodes are divided into three categories:
 - output gates (outdegree 0)
 - intermediate gates
 - input gates (indgree 0)
- \blacktriangleright s assigns a Boolean function s(g) to each intermediate and output gate g of appropriate arity corresponding to the indegree of the gate.
- $\triangleright \alpha$ assigns truth values to some gates.
- Typical Boolean functions used in the gates are and /n (n-input and function), $or/n, not, equiv/2, xor/2, \ldots$

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

or v_2

.N. & P.O. Autumn 2006

$s(v_1) = and/2$ $s(v_2) = or/3$ $s(v_2) = equiv/2$ $\alpha(v_4) =$ false

 v_1 is the output gate of the circuit v_4, v_5, v_6 are the input gates

Boolean Circuits

- Normal forms are often guite an unnatural way of encoding problems and it is more convenient to use full propositional logic.
- In many applications the encoding is of considerable size and different parts of the encoding have a substantial amount of common substructure.
- Boolean circuits offer an attractive formalism for representing the required Boolean functions where compactness is enhanced by sharing common substructure.

Example. Boolean Circuit

 $(equiv) v_3$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへで

Boolean Circuits—Semantics

- For a circuit a truth assignment *T* : *X*(*C*) → {true, false} gives a truth assignment to each gate in *X*(*C*) where *X*(*C*) is the set of input gates of *C*.
- This defines a truth value T(g) for each gate g inductively when the gates are ordered topologically in a sequence so that no gate appears in the sequence before its input gates (this is always possible because the circuit is acyclic):
 - ▶ If $g \in X(C)$, then the truth assignment T(g) gives the truth value.
 - Otherwise T(g) = f(T(g₁),...,T(g_n)) where (g₁,g),... and (g_n,g) are the edges entering g and f is the Boolean function s(g) associated to g.

Example. For the previous example circuit C, $X(C) = \{v_4, v_5, v_6\}$. For a truth assignment $T(v_4) = T(v_5) = T(v_6) =$ false, $T(v_3) = equiv($ false, false) = true, $T(v_2) =$ false, $T(v_1) =$ false.

.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Boolean Circuits vs. Propositional Formulas

For each propositional formulae ϕ , there is a corresponding Boolean circuit C_{ϕ} such that for any T appropriate for both, $T(g_{\phi}) =$ **true** iff $T \models \phi$ for an output gate g_{ϕ} of C_{ϕ} . Idea: just introduce a new gate for each subexpression.

$$egin{aligned} (a ee b) \wedge (
eg a ee b) \wedge (
eg a ee b) \wedge (
eg a ee
eg b) \wedge (
eg a ee
eg b) \end{pmatrix}$$

・ロト・日本・モト・モー ショー ショー

- For each Boolean circuit *C*, there is a corresponding formula ϕ_C .
- Notice that Boolean circuits allow shared subexpressions but formulas do not.

For instance, in the circuit above gates a, b, c, d.

Circuit Satisfiability Problem

- An interesting computational (search) problem related to circuits is the circuit satisfiability problem.
- Given a Boolean circuit (V, E, s, α) we say a truth assignment T satisfies the circuit if it satisfies the constraints α, i.e., for each gate g for which α gives a truth value, α(g) = T(g) holds.
- CIRCUIT SAT problem: Given a Boolean circuit find a truth assignment *T* that satisfies the circuit.

Example. Consider the circuit with constraints $\alpha(v_4) = \text{false}, \alpha(v_1) = \text{true}.$ This circuit has a satisfying truth assignment $T(v_4) = \text{false}, T(v_5) = T(v_6) = \text{true}.$ If the constraints are $\alpha(v_2) = \text{false}, \alpha(v_1) =$ true, the circuit is unsatisfiable.

.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Circuits Compute Boolean Functions

- ► A Boolean circuit with output gate g and variables $x_1, ..., x_n$ computes an *n*-ary Boolean function *f* if for any *n*-tuple of truth values $\mathbf{t} = (t_1, ..., t_n)$, $f(\mathbf{t}) = T(g)$ where $T(x_i) = t_i$, i = 1, ..., n.
- Any *n*-ary Boolean function *f* can be computed by a Boolean circuit involving variables x₁,..., x_n.
- Not every Boolean function can be computed using a concise circuit.

Theorem

For any $n \ge 2$ there is an n-ary Boolean function f such that no Boolean circuit with $\frac{2^n}{2n}$ or fewer gates can compute it.

< 62 →

Boolean Circuits as Equation Systems

A Boolean circuit can be written as a system of equations.

Boolean Modelling

- Propositional formulas/Boolean circuits offer a natural way of modelling many interesting Boolean functions.
- Example. IF-THEN-ELSE ite(a, b, c) (if a then b else c.). As a formula:

ite
$$(a, b, c) \equiv (a \land b) \lor (\neg a \land c)$$

As a circuit:
 $ite = or(i_1, i_2)$
 $i_1 = and(a, b)$
 $i_2 = and(a_1, c)$

- $a_1 = \operatorname{not}(a)$
- Given gates a, b, c, ite(a, b, c) can be thought as a shorthand for a subcircuit given above.
- In the bczchaff tool used in the course ite(a, b, c) is provided as a primitive gate functions.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ りへで

(ロ)・(品)・(言)・(言)・(言)・(言)・(こ)・(の) I.N. & P.O. Autumn 2006 29

-79.4201 Search Problems and Algorithms

Example

Binary adder. Given input bits a, b and c

compute output bits $o_2 o_1$ which give the sum of *a*, *b*, and *c* in binary.

As a formula:

$$o_1 \equiv ((a \oplus b) \oplus c)$$
$$o_2 \equiv (a \land b) \lor (c \land (a \oplus b))$$

$$o_2 \equiv (a \land b) \lor (c \land (a \oplus b))$$

As a circuit:

$$o_1 = \operatorname{xor}(x, c)$$

$$o_2 = or(I, r)$$

$$I = and(a, b)$$

$$r = and(c, x)$$

$$x = xor(a, b)$$

T–79.4201 Search Problems and Algorithms

.N. & P.O. Autumn 2006

Encoding Problems Using Circuits

- Circuits can be used to encode problems in a structured way.
- Example. Given three bits a, b, c find their values such that if at least two of them are ones then either a or b is one else a or c is one.
- We use IF-THEN-ELSE and adder circuits to encode this as a CIRCUIT SAT problem as follows:

$$p = ite(o_2, x, p_1)$$

$$p_1 = \operatorname{or}(a, c)$$

full adder; gate o_1 omitted

$$o_2 = or(I, r)$$

$$I = and(a, b)$$

$$r = and(c, x)$$

- x = xor(a, b)
- Now each satisfying truth assignment for the circuit with α(p) = true gives a solution to the problem.

31

I.N. & P.O. Autumn 2006

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Example. Reachability

Given a graph $G = (\{1, ..., n\}, E)$, constructs a circuit R(G) such that R(G) is satisfiable iff there is a path from 1 to *n* in *G*.

- ► The gates of R(G) are of the form g_{ijk} with $1 \le i, j \le n$ and $0 \le k \le n$ h_{ijk} with $1 \le i, j, k \le n$
- g_{ijk} is true: there is a path in G from i to j not using any intermediate node bigger than k.
- *h_{ijk}* is **true**: there is a path in *G* from *i* to *j* not using any intermediate node bigger than *k* but using *k*.

Example—cont'd

R(G) is the following circuit:

- For k = 0, g_{ijk} is an input gate.
- ► For k = 1, 2, ..., n: $h_{ijk} = and(g_{ik(k-1)}, g_{kj(k-1)})$ $g_{ijk} = or(g_{ij(k-1)}, h_{ijk})$
- g_{1nn} is the output gate of R(G).
- Constraints α: For the output gate: α(g_{1nn}) = true
 For the input gates: α(g_{ij0}) = true if i = j or (i, j) is an edge in G else α(g_{ij0}) = false.

P.O. Autumn 2006 33 I.N. & P.O. Autumn 2006

-79.4201 Search Problems and Algorithms

Example—cont'd

- Because of the constraints α on input gates there is at most one possible truth assignment *T*.
- It can be shown by induction on k = 0, 1, ..., n that in this assignment the truth values of the gates correspond to their given intuitive readings.
- From this it follows:

R(G) is satisfiable iff $T(g_{1nn}) =$ **true** in the truth assignment iff there is a path from 1 to *n* in *G* without any intermediate nodes bigger than *n* iff there is a path from 1 to *n* in *G*.

-79.4201 Search Problems and Algorithms

Example. Reachability with choices

- Consider now a more challenging (search) problem.
- Given a graph $G = (\{1, ..., n\}, E)$ and a set of edges $E' \subseteq \{1, ..., n\} \times \{1, ..., n\}$, is there a subset $S \subseteq E'$ such that there is a path from 1 to n in $G' = (\{1, ..., n\}, E \cup S)$ but not from 1 to n 1.
- To solve this problem we can use the circuit R(G) and modify it as follows:
 - ► remove constraints $\alpha(g_{i,j,0}) = t$ for each edge $(i,j) \in E'$ and
 - add the constraint $\alpha(g_{1,n-1,n}) =$ false
- Now the modified R(G) is satisfiable iff there is a set of edges S such that there is a path from 1 to *n* but not from 1 to n-1.
- ► Moreover, the set of edges S is given by the gates g_{i,j,0} true in a satisfying truth assignment where (i,j) ∈ E'.

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

From Circuits to CNF

- Translating Boolean Circuits to an equivalent CNF formula can lead to exponential blow-up in the size of the formula.
- Often exact equivalence is not necessary but auxiliary variables can be used as long as at least satisfiability is preserved.
- Then a linear size CNF representation can be obtained using co-called Tseitin's translation where given a Boolean circuit C the corresponding CNF formula is obtained as follows
 - a new variable is introduced to each gate of the circuit,
 - the set of clauses in the normal form consists of the gate equation is written in a clausal form for each intermediate and output gate and the corresponding literal for each gate g with a constraint α(g) = t.
- This transformation preserves satisfiability and even truth assignments in the following sense:

if *C* is a Boolean circuit and Σ its Tseitin translation, then for every truth assignment *T* of *C* there is a satisfying truth assignment *T'* of Σ which agrees with *T* and vice versa.

I.N. & P.O. Autumn 2006

37

I.N. & P.O. Autumn 2006

From Circuits to CNF II

$$(\neg v_1 \lor v_2) \land (\neg v_1 \lor v_3) \land (v_1 \lor \neg v_2 \lor \neg v_3) \land (v_2 \lor \neg v_4) \land (v_2 \lor \neg v_5) \land (v_2 \lor \neg v_6) \land (\neg v_2 \lor v_4 \lor v_5 \lor v_6) \land (v_3 \lor v_5 \lor v_6) \land (v_3 \lor \neg v_5 \lor \neg v_6) \land (\neg v_3 \lor v_5 \lor \neg v_6) \land (\neg v_3 \lor \neg v_5 \lor v_6) \land (\neg v_4) [for the constraint $\alpha(v_4) = false]$$$

・ロト・日本・ キョン・ヨン シック