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Lecture 2: Combinatorial search and optimisation
problems

I Different types of computational problems

I Examples of computational problems

I Relationships between problems

I Computational properties of different problems.
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Computational problems

I A (computational) problem: an infinite set of possible instances
with a question.

I A decision problem: a question with a yes/no answer

Example

REACHABILITY
INSTANCE: A graph (V ,E) and nodes v ,u ∈ V .
QUESTION: Is there a path in the graph from v to u?

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Computational problems
Often more complicated questions are of interest:

I Search (function) problem:
given an instance find a solution (object satisfying certain
properties).

I Optimization problem:
given an instance find a best solution according to some cost
criterion.
Typically this is formalized by specifying

I what are feasible solutions for an instance and
I a cost function which assigns a cost (typically a integer/real

number) to each feasible solution.

Now a solution to an optimization problem instance is a feasible
solution that has the minimal (or maximal) cost.

I Counting problem:
given an instance count the number of solutions.

I.N. & P.O. Autumn 2006

T–79.4201 Search Problems and Algorithms

Examples

I PATH
INSTANCE: A graph (V ,E) and nodes v ,u ∈ V .
QUESTION: Find a path from v to u.

I SHORTEST PATH
INSTANCE: A graph (V ,E) and nodes v ,u ∈ V .
QUESTION: Find a shortest path from v to u.

I #PATH
INSTANCE: A graph (V ,E) and nodes v ,u ∈ V .
QUESTION: Count the number of simple paths from v to u.
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Easy and hard problems

I Many problems are computationally easy: there is a polynomial
time algorithm for the problem, i.e. there is an algorithm solving
the problem whose run time increases polynomially w.r.t. the size
of the input instance. Consider, e.g., REACHABILITY.

I Some problems are not computationally easy: there is no known
guaranteed polynomial time algorithm for the problem, i.e. for any
known algorithm there is an infinite collection of instances for
which the run time increases super-polynomially w.r.t. the size of
the instance.

I This course focuses on methods for solving such problems in
practice.
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Examples of hard problems

I SAT
INSTANCE: a propositional formula in conjunctive normal form
QUESTION:
(D) Is the formula satisfiable?
(S) Find a satisfiable truth assignment for the formula.
(O) Find a truth assignment that satisfies the most clauses in the
formula.

I GRAPH COLORING
INSTANCE: A graph (V ,E) and a positive integer k
QUESTION:
(D) Is there a k -coloring of the graph, i.e. an assignment of one of
the k colors to each vertex such that vertices connected with an
edge do not have the same color?
(S) Find a k -coloring.
(O) Find an l-coloring with the smallest number l of colors.
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Examples of hard problems (II)

I CLIQUE
INSTANCE: A graph (V ,E) and a positive integer k
QUESTION:
(D) Is there a k -clique in the graph, i.e. a set of k nodes such that
there is an edge between every pair of vertices from the set.
(S) Find a k -clique.
(O) Find an l-clique with the largest number l of vertices.

I SET COVER
INSTANCE: A family of sets F = {S1, . . . ,Sn} of subsets of a
finite set U and a positive integer k .
QUESTION:
(D) Is there k -cover of U, i.e., a set of k sets from F whose union
is U.
(S) Find a k -cover of U.
(O) Find a set l-cover of U with the smallest number l of sets.
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Examples of hard problems (III)
TSP (TRAVELING SALESPERSON)
INSTANCE: n cities 1, . . . ,n and a nonnegative integer distance dij

between any two cities i and j (such that dij = dji ) and a positive
integer B.
QUESTION:
(D) Is there a tour of length at most B, i.e. a permutation π of the cities
such that the length

n

∑
i=1

dπ(i)π(i+1)

is at most B (where π(n +1) = π(1))?
(S) Find a tour of length at most B.
(O) Find the shortest tour of the cities.
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Relationship between problems

I An interesting relationship between two computational problems
A and B is that of a reduction.

I B reduces to A (B v A) if there is a transformation R which for
every input instance x of B produces an equivalent input instance
R(x) of A (where equivalent means that the answer (yes/no) for
R(x) considered as the input of A is the correct answer to x as an
input of B).

I For a reduction to be useful it needs to be relatively easy to
compute (compared to the problems A and B).

I Typically it is assumed that the reduction can be computed in
polynomial time.
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Reduction
Reduction from B to A (B v A) can be exploited in two interesting
ways:

I an algorithm for B can be built on top of an algorithm for A.

I reduction implies that A is computationally at least as hard as B.

input x =⇒

Algorithm for B:
Reduction

R
R(x)
=⇒

Algorithm
for A

=⇒ Answer

I The former is used extensively in the course.

I The latter is used in computational complexity theory (T-79.5103)
to classify computational problems; B v A orders problems by
difficulty.
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Example: 3-COL v SAT

I 3-COL
INSTANCE: a graph (V ,E).
QUESTION: is there a 3-coloring of the graph.

I Reduction from 3-COL to SAT
For each vertex v ∈ V :
v(1)∨ v(2)∨ v(3)
¬v(1)∨¬v(2)
¬v(1)∨¬v(3)
¬v(2)∨¬v(3)

For each edge (v ,u) ∈ E :
¬v(1)∨¬u(1)
¬v(2)∨¬u(2)
¬v(3)∨¬u(3)

I This is a reduction because
(i) it can be computed efficiently and
(ii) it produces from an instance of 3-COL an equivalent instance
of SAT: the graph has a 3-coloring iff the set of clauses is
satisfiable.
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Example: 3-SAT v INDEPENDENT SET

I INDEPENDENT SET
INSTANCE: A graph G = (V ,E) and an integer K .
QUESTION: Is there an independent set I ⊆ V with |I| = K .
(A set I ⊆ V is independent if i, j ∈ I implies that there is no edge
between i and j).

I Reduction from 3-SAT to INDEPENDENT SET
Given a set φ of m clauses each with three literals, construct a
graph whose vertices are the occurrences of the literals in φ and
add edges so that for each clause there is a separate triangle and
then add an edge between two vertices in different triangles if
they correspond to complementary literals.
Finally, set K = m.
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Example: 3-SAT v INDEPENDENT SET—cont’d

I This is a reduction because φ is satisfiable iff there is an
independent set of size m for the graph.
(⇒) If φ has a satisfying truth assignment, then take one vertex
from each triangle for which the corresponding literal is true in the
assignment and this gives an independent set of size m.
(⇐) If there is an independent set of size m, then it contains
exactly one vertex from each triangle and no two vertices
corresponding to complementary literals. Hence, the set induces
a truth assignment for which each clause has a true literal
implying that φ is satisfiable.
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Example: INDEPENDENT SET v CLIQUE

I Reduction from INDEPENDENT SET to CLIQUE
Given a G = (V ,E) and an integer K , take the complement
graph G′ = (V ,{(v ,u) | v ,u ∈ V ,(v ,u) 6∈ E}.

I This is a reduction because an independent set of a graph is a
clique of the complement graph.

I Reductions compose (are transitive):
3-SAT v INDEPENDENT SET and
INDEPENDENT SET v CLIQUE imply
3-SAT v CLIQUE

I Hence, using an algorithm for CLIQUE, we can solve
INDEPENDENT SET, 3-SAT, 3-COL using reductions.
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Reductions—cont’d

I Reductions for search problems need a translation of the result
back to the original problem:
A reduction from a search problem B to A is a pair of mappings
(R,S) (both computable in polynomial time) such that for all x ,z:
if x is an instance of B, then R(x) is an instance of A and if z is a
correct output of R(x), then S(z) is a correct output of x .

I For optimization problems optimality needs to be preserved, too.

input x =⇒

Algorithm for B:
Red.

R
R(x)
=⇒

Algorithm
for A

z
=⇒

Red.
S

S(z)
=⇒ Answer
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Size of the reductions
In practice not all polynomial time reductions are useful in building
algorithms on top of others but the size of the translation matters.

Example

I Consider a problem A for which we have a 2n/1000 algorithm.
Hence, an input of length n=20000 needs 220000/1000 ≈ 106 steps.

I We want to use this algorithm to solve a difficult problem B for
which we have a quadratic translation to A.

I Now the run time of the combined algorithm for B is
p(n)+2n2/1000 where p(n) is a polynomial giving the run time of
the translation from B to A.

I For an input of length n=20000 the run time is
p(20000)+2200002/1000 ≥ 2400000 ≥ 1010000 steps!
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Relationship between different kinds of problems
Decision problems vs search problems

I A decision problem reduces to the corresponding search problem
trivially, i.e., if a search problem can be solved efficient so can the
corresponding decision problem.

I But also a search problem reduces to the corresponding decision
problem.
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SET COVER(D) vs SET COVER(S)
I If SET COVER(S) can solved in polynomial time, then so can

SET COVER(D).
I If SET COVER(D) can solved in polynomial time, then so can

SET COVER(S) using the following algorithm given a family
F = {S1, . . . ,Sn} of subsets of U and a positive integer k .

if setcover(F , k ) returns “no” then return “no”;
l := k-1;
for all S ∈ {S1, . . . ,Sn} do
if setcover(F [S := true ], l) returns “yes” then

T (S) := true ; F := F [S := true ]; l := l - 1
else T (S) := false ; F := F [S := false ];

return T ;
where setcover(F ,k ) is a procedure deciding whether F has a
k -cover; F [S := true ] denotes F with the set S and its elements
removed from F and U; F [S := false ] is just the set S removed
from F ; and {S ∈ F | T (S) = true} is the computed k-cover;
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Decision vs optimization problems
Consider TSP(D) vs TSP(O)

I If TSP(O) can solved in polynomial time, then so can TSP(D).

I If TSP(D) can solved in polynomial time, then so can TSP(O).
I An optimal tour can be found using an algorithm which

1. finds the cost C of an optimal tour by binary search (with a
polynomial number of calls to the polynomial time algorithm for
TSP(D));

2. finds an optimal tour using C (with a polynomial number of calls to
the polynomial time algorithm for TSP(D)).
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TSP(D) vs TSP(O)
A TSP(O) algorithm using a TSP(D) algorithm as a subroutine:

/*Find the cost C of an optimal tour by binary search*/
C := 0; Cu := 2n;
while (Cu > C) do

if there is a tour of cost b(Cu +C)/2c or less then
Cu := b(Cu +C)/2c

else C := b(Cu +C)/2c+1;
/* Find an optimal tour */
For every intercity distance d(i, j) do

set the distance to C +1;
if there is a tour of cost C or less, freeze the distance to C +1
else restore the original distance and add (i, j) to the tour;

endfor
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Different kinds of optimization problems

I Consider the traveling salesperson problem and two new variants:
EXACT TSP: Given a distance matrix and an integer B, is the
length of the shortest tour equal to B?
TSP COST: Given a distance matrix, compute the length of the
shortest tour.

I It can be shown that the four variants can be ordered in
“increasing complexity” by reductions:
TSP(D) ; EXACT TSP; TSP COST; TSP(O)

I All the four variants of TSP are polynomially equivalent: there is a
polynomial-time algorithm for one iff there is one for all four
(because TSP(D) and TSP(O) are).
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Computational properties of problems

I The previous arguments indicate that for a problem the decision,
search, and optimization variants are polynomially equivalent.

I However, this does not imply that they are equally easy to solve in
practice.

I There are differences if no polynomial algorithm is known.
I For a decision problem the “yes” answer is often easy to verify.

I Typically, the question is about existence of a certain objects
(witness/certificate) such as a satisfying truth assignment, a
coloring, . . .

I If the witness is given, then the correctness of the “yes” answer
can be checked in polynomial time.

I However, the “no” answer is more challenging to verify because
there is no obvious witness/certificate for the answer, e.g., for the
lack of coloring.
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Computational properties of problems (II)

I The same holds for search problems where the correctness of
the found object can typically be checked in polynomial time but
where the “no” answer is more challenging to verify.

I Notice that even if the verification of a solution is easy, this does
not imply that finding a solution is easy.

I Many engineering problems fall into this class of problems

I A typical problem is to construct a mathematical object satisfying
certain specifications (path, solution of equations, routing, VLSI
layout,. . . ).

I The decision version of the problem is determine whether at least
one such an object exists for the input.

I The object is usually not very large compared to the input.
I The specifications of the object are usually simple enough to be

checkable in polynomial time.
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Computational properties of problems (III)

I The decision versions of this class of problems form the problem
class NP, i.e., decision problems with polynomial size certificates
that are checkable in polynomial time.

I The hardest problems in this class (w.r.t. v) are called
NP-complete problems and they include, for example, SAT,
GRAPH COLORING, CLIQUE, SET COVER, TSP, . . .

I To learn more, see computational complexity theory, for example,
course T-79.5103 in the autumn term.

I For optimization problems it is hard even to verify a solution.

I Consider an instance of the traveling salesperson problem and its
potential solution π.

I There seems to be no obvious polynomial time test that could
establish that π is actually a tour of the cities that has the shortest
possible length.

I Counting problems are often even harder.
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Computational properties of optimization
problems

I The computational hardness of verifying a solution depends on
the type of an optimization problem.

I EXACT TSP: checking whether the length of the shortest tour
equals to B requires two calls to the decision problem:

I check whether there is a tour of length at most B?
I check whether there is not a tour of length at most B−1?

I However, checking the length of the shortest tour seems to
require polynomial number of adaptive calls to the decision
procedure (see binary search above).

I The same holds for checking the shortest tour.
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Algorithm design techniques for hard problems

I There are several approaches to developing efficient algorithms
for computationally challenging problems such as:

I identify special cases (using tools from complexity theory) and
develop special algorithms for these

I approximation algorithms
I randomized algorithms

I However, it typically requires a substantial amount of expertise
and resources to develop an efficient algorithm for a problem.

I For example, in practical applications it often happens that the
problem specification is not “mathematically clean” but includes a
number of “side conditions” and criteria which are fairly
complicated to integrate into an algorithm. Moreover, these “side
conditions” tend to change quite frequently.

I In this course we study search algorithms as a practical set of
tools to solve such problems.
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