T-79.4201 Autumn 2006

Search Problems and Algorithms Tutorial 7, 9 November Problems

- 1. (i) Give a general technique for translating a finite discrete CSP to an equivalent propositional satisfiability (SAT) problem where in a finite discrete CSP each variable has a finite domain and each constraint is a finite set of tuples.
 - (ii) Use the translation to map the CSP below to a SAT problem.

$$\langle C_1(x_1, x_2, x_3), C_2(x_1, x_3), x_1 \in \{1, 2, 3\}, x_2 \in \{1, 2, 3\}, x_3 \in \{1, 2, 3\} \rangle$$

where
$$C_1 = \{(1, 2, 3), (2, 2, 3), (3, 2, 3)\}$$
 and $C_2 = \{(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)\}.$

- 2. Consider the global cardinality constraint $gcc_{l,u}(X)$ where X is a vector (x_1, \ldots, x_n) of variables and l, u are functions from the union of domains D_1, \ldots, D_n of variables x_1, \ldots, x_n to non-negative integers. A tuple $t = (a_1, \ldots, a_n) \in D_1 \times \cdots \times D_n$ belongs to $gcc_{l,u}(X)$ iff $l(a_i) \leq \#(a_i, t) \leq u(a_i)$ where $\#(a_i, t)$ denotes the number of times the value a_i appears in the tuple t.
 - (i) Express the alldiff(X) constraint using $gcc_{l,u}(X)$.
 - (ii) Consider the constraint $gcc_{l,u}(x_1,\ldots,x_8)$ where for all $i=1,\ldots,8,\ D_i=\{1,2,3\}$ and for all $a\in\{1,2,3\}, l(a)=0, u(a)=2$. Is this constraint hyper-arc consistent?
- 3. Compare WalkSAT and Novelty algorithms.
 - (i) Give a setting for the parameter p such that Novelty is deterministic but WalkSAT is not.
 - (ii) Explain why Novelty is said to be greedier than WalkSAT.
- 4. Write an integer program such that variables x_1, x_2 can have only values 0 or 1 and variable x_3 has the value of the Boolean function $xor(x_1, x_2)$ in all feasible solutions.