Autumn 2006

T-79.4201 Search Problems and Algorithms Tutorial 5, 19 October Problems

1. Give all solutions to the following constraint satisfaction problem (CSP)

$$\langle \{C_1(z,y), C_1(y,x), C_1(x,z)\}; \\ x \in \{1,2,3\}, y \in \{1,2,3\}, z \in \{1,2,3\} \rangle$$

where $C_1 = \{(1,3), (1,2), (1,1), (2,3), (2,2), (3,3)\}$

- 2. Encode the SET COVER problem as a constraint satisfaction problem (CSP).
- 3. Encode the TSP optimization problem as a constrained optimization problem.
- 4. a) Give a propositional formula that expresses the Boolean function that the circuit below computes.

- b) Give a propositional formula in CNF that expresses the Boolean function
 - i) $odd(x_1, x_2, x_3)$ which evaluates to true iff an odd number of x_1, x_2, x_3 have the value true;
 - ii) $at least_2(x_1, \ldots, x_n)$ which evaluates to true iff the number of x_1, \ldots, x_n having the value true is at least 2;
 - iii) $atmost_{n-1}(x_1, \ldots, x_n)$ which evaluates to true iff the number of x_1, \ldots, x_n having the value true is at most n-1;
- 5. Give a Boolean circuit that performs the lexicographic comparison of two n bit strings, i.e., construct a circuit that has input gates $x_1, \ldots, x_n, y_1, \ldots, y_n$ and its output gate has the value true in a truth assignment T iff the bit string $b_1b_2\cdots b_n$ given as input for the gates x_1, \ldots, x_n in T is lexicographically properly greater than $c_1c_2\cdots c_n$ given as input for the gates y_1, \ldots, y_n .

Here when a bit string $b_1b_2\cdots b_n$ is given as input for the gates x_1,\ldots,x_n in a truth assignment T it means that for $i = 1,\ldots,n$, if $b_i = 1$ then $T(x_i) = true$ else $T(x_i) = false$ and similarly for the input gates y_1,\ldots,y_n .

Hint: For example, the bit string 01000 is lexicographically properly greater than 00111.