
Computing by Waiting and Guessing

Computing by Waiting and Guessing

Pekka Orponen

T-79.4001 Seminar on Theoretical Computer Science

21.3.2007

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

Outline

◮ 1. Problems and assumptions
◮ 2. Minimum-finding by waiting

◮ Waiting in rings
◮ Waiting in general networks
◮ Computing Boolean functions
◮ Randomised election

◮ 3. Minimum-finding by guessing
◮ The general protocol
◮ A natural guessing strategy
◮ The optimal guessing strategy
◮ Removing the constraints

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

1. Problems and Assumptions

◮ Focus on Minimum-Finding and Election in synchronous
networks.

◮ Basic algorithms presented for unidirectional rings; simple
extensions to other topologies.

◮ Assumptions:
◮ Minimum-Finding: R+Synch

(R = {Bidirectional Links, Connectivity, Total Reliability})
◮ Election: R+Synch+ ID

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

2. Minimum-Finding by Waiting

◮ Unidirectional ring of size n, each entity x has positive integer
id(x) and knows n.

◮ Min-Find-Wait:
◮ 1. Entity x wakes up and waits for f (id(x),n) time units.
◮ 2. If nothing happens in this time, x determines “I am the smallest”

and sends a Stop message.
◮ 3. If instead x receives a Stop message, it determines “I am not

smallest” and forwards the message.

◮ If all entities wake up simultaneously and the waiting function f is
monotone:

id(x) < id(y) ⇒ f (id(x),n) < f (id(y),n),

then minimal elements correctly determine their status.

◮ However the minimal elements must also eliminate the
non-minimal ones . . .

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

◮ For the elimination it suffices that

id(x) < id(y) ⇒ f (id(x),n)+ d(x ,y) < f (id(y),n),

where d(x ,y) ≤ n−1 is the distance from x to y .

◮ Thus in a ring one may choose f (i,n) = i ·n.

◮ Note: If elements have unique id’s, then protocol also solves
leader election.

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

◮ In case of non-simultaneous wake-up, when entity x wants to
start the protocol it first sends its neighbour a Start message and
then starts waiting.

◮ To account for the wake-up differences it suffices that

id(x) < id(y) ⇒ f (id(x),n)+ 2d(x ,y) < f (id(y),n),

i.e. in a ring one may choose f (i,n) = 2i ·n.

◮ In a bidirectional ring one needs in addition take care that each
element forwards its messages in a consistent direction.

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

Comparison of minimum-finding protocols

Protocol Bits Time Notes
Speed O(n log imax) O(2imax n)

SynchStages O(n log n) O(imaxn log n)

Wait O(n) O(imaxn) n known

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

Waiting in general networks

◮ The waiting protocol actually works in exactly the same way in all
(connected) networks, assuming the entities know (a bound on)
the network diameter d .

◮ Min-Find-Wait:
◮ 1. Entity x wakes up either spontaneously or by a Start message

from one of its neighbours; it sends/forwards Start to its
neighbours.

◮ 2. Entity x waits for f (id(x)) = 2id(x)(d + 1) time units.
◮ 3. If nothing happens in this time, x determines “I am the smallest”

and sends its neighbours a Stop message.
◮ 4. If instead x receives a Stop message, it determines “I am not

smallest” and forwards the Stop message.

◮ Correctness: Definition of the waiting function f (i) guarantees
that, if t(z) is the wake-up time of entity z, then

id(x) < id(y) ⇒ t(x)+ f (id(x))+d(x ,y) < t(y)+ f (id(y)).

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

Application: computing Boolean functions

◮ Assume each entity x has a Boolean value b(x) ∈ {0,1} and the
goal is to have everyone know the AND of those values.

◮ Observe that in this case AND = Min, and apply the
Min-Find-Wait protocol.

◮ Note that:

f (b(x)) =

{

2(d + 1), if b(x) = 1,
0, if b(x) = 0.

◮ Thus the time complexity of the protocol is 2(d +1) units, and the
bit complexity is ≤ 2n bits. (Can probably be decreased to just n.)

◮ The OR function can be computed by an analogous protocol.

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

Application: randomised election

◮ Assume n entities in a unidirectional ring. (Method can be
generalised to also other topologies.)

◮ Entities know n but do not have identities. Because of symmetry,
deterministic leader election is impossible. Symmetry can be
broken by randomisation.

◮ Randomised-Election:
◮ 1. The protocol works in rounds.
◮ 2. In a round, each entity x chooses a random identity

b(x) ∈ {0,1} with Pr(b(x) = 0) = 1/n, Pr(b(x) = 1) = 1−1/n.
◮ 3. An entity x with b(x) = 0 sends the signal Leader? to its

neighbour and waits. Entities x with b(x) = 1 just forward any
possible Leader? signals.

◮ 4. If an entity x with b(x) = 0 gets its Leader? signal back after
exactly n time units, it will become the leader and sends a
Terminate signal to notify the others. Otherwise it sends a
Restart signal to initiate a new round.

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

◮ The bit and time complexity of each round is O(n). How many
rounds are needed?

◮ The probability that exactly one entity x chooses b(x) = 0 is

n · 1

n
·
(

1− 1

n

)n−1

=

(

1− 1

n

)n−1

≈ 1

e
≈ 0.37.

◮ Thus the number of rounds is geometrically distributed with
parameter p ≈ 1/e, and so

E [#rounds] =
1

p
≈ e ≈ 2.78

and

Pr(≥ k rounds needed) = (1−p)k−1 ≈ (0.63)k−1.

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

3. Guessing

◮ More precisely: distributed interval search.

◮ Consider again minimum finding in a unidirectional ring with
n entities; all entities know the size of the ring and start
simultaneously.

◮ Decide(p):
◮ 1. Each entity x compares p :: id(x).
◮ 2. If p ≥ id(x), then x decides “High” and sends signal High to

neighbour.
◮ 3. If p < id(x) then x waits for any possible High-signals for n time

units. If one is received, also x decides “High” and forwards the
signal. If no High-signal is received, x decides “Low”.

◮ Denote imin = min{id(x)}. After one round of protocol Decide(p) ,
all entities know whether p ≥ imin (“High”) or p < imin (“Low”).

◮ The time complexity of one round is n units. The bit complexity of
deciding “High” is n, and the bit complexity of deciding “Low” is 0.

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

◮ The common goal of the entities (“players”) is to determine the
value imin. They start at some guess p = p1, and based on
whether this was “High” or “Low” choose another guess p = p2

etc. until imin can be determined.

◮ What is the optimal sequence of guesses p1,p2, . . .? Note that
each guess costs n time units, but only high guesses incur a bit
cost.

◮ Thus there is a tradeoff between time and bit cost. E.g. a simple
linear search has expected time cost O(n2) and bit cost n; a
binary search, assuming imin ≤ n, has expected time and bit cost
both O(n log n).

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

◮ Assume that imin ∈ [1,M]. Denote q total number of guesses,
k ≤ q number of high guesses.

◮ Then a guessing strategy with given q, k costs qn time and
kn bits.

◮ E.g. for linear search: k = 1, q = M in the worst case.

◮ What is the nature of the k vs. q tradeoff? E.g. how much does
allowing k = 2 decrease q?

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

A natural guessing strategy

◮ For k = 2:
◮ 1. Partition the interval [1,M] into ⌈

√
M⌉ subintervals of length

⌈
√

M⌉. (The last subinterval may be shorter than the others.)
◮ 2. Query first the endpoints of the subintervals, p1 = ⌈

√
M⌉−1,

p2 = 2⌈
√

M⌉−1, . . . until one of the guesses is high or the last
subinterval is reached.

◮ 3. Then search the relevant subinterval linearly.

◮ This strategy clearly has k = 2, q = 2⌈
√

M⌉. Thus, a linear
increase in bit cost allows a superlinear decrease in time cost.

◮ The strategy can easily be generalised in a hierarchical way to
arbitrary k , yielding q = kM1/k .

◮ Can we do better? If we want to keep the bit cost linear, then we
must have k = constant. What is the optimal way to allocate a
given constant number of high guesses?

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

The optimal guessing strategy

◮ To find the optimal strategy, consider the quantity

h(q,k) =largestM such that interval[1,M] can be covered

by q queries, out of which at mostk ≤ q are high.

◮ Then for k = 1 we have:

h(q,1) = q,

because linear search is the only safe strategy in this case.

◮ At the other extreme, binary search yields:

h(q,q) = 2q −1.

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

◮ Consider an optimal strategy with q queries out of which k may
be high.

◮ Let p be the first guess of the strategy. Now p may be either low
or high as compared to the number being sought.

◮ If p is low, then we have q−1 queries left, including all our k high
queries. Thus, for any initial low guess p, an interval of length
p + h(q −1,k) can be covered, and it seems ideal to make the
first guess as large as possible.

◮ However, if the first guess p is high, then we only have k −1 high
queries left, with which we must be able to cover all of the interval
[1,p]. Thus the largest safe first guess is p = h(q −1,k −1), and
we get the recurrence equation:

h(q,k) = h(q −1,k −1)+ h(q−1,k).

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

◮ The recurrence equation with boundary conditions:
{

h(q,k) = h(q −1,k −1)+ h(q −1,k), 1 < k < q,
h(q,1) = 1, h(q,q) = 2q −1

has solution:1

h(q,k) =
k

∑
j=1

(

q

j

)

.

◮ The optimal guessing strategy for searching interval [1,M] with at
most k high guesses is thus:

◮ 1. Query p = h(q−1,k −1), where q ≥ k is smallest integer
such that M ≤ h(q,k).

◮ 2. If p is low, then optimally search interval [p + 1,M] with at most
k high guesses.

◮ 3. If p is high, then optimally search interval [1,p] with at most
k −1 high guesses.

1There’s something wrong here: the recurrence should have an additional “+1” on
the r.h.s. for this to hold.

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

Removing the constraints

◮ Bounded interval: Use an initial sequence of monotonically
increasing guesses g(1) < g(2) < .. . until one of them, say g(t),
is high. Then search interval [g(t −1)+ 1,g(t)] using the optimal
strategy. If e.g. g(j) = 2j , and one denotes

r(M,k) = min{q | h(q,k) ≥ M},

then

r(∗,k) ≤ ⌈log2 imin⌉+ r(imin,k −1).

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

◮ Knowledge of n: The entities may use a common upper bound
n̄ ≥ n.2

◮ Network topology: Assume the entities have a common upper
bound d̄ on the network diameter d . Transform the protocol into a
reset with signal High, initiated by entities with id(x) ≤ p. Use d̄
as the timeout value.

◮ Simultaneous start: Perform a wakeup before running the
protocol and use a longer delay between successive guesses.

2There’s also a method, discussed in Santoro’s book Section 6.3.3., for combining
the Waiting and Guessing methods to remove the dependence on the network
size/diameter altogether.

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007



Computing by Waiting and Guessing

Comparison of minimum-finding protocols

Protocol Bits Time Notes
Speed O(n log imax) O(2imax n)

SynchStages O(n log n) O(imaxn log n)

Wait O(n) O(imaxn) n known

Guess O(kn) O(i
1/k
maxkn) n known

T–79.4001 Seminar on Theoretical Computer Science 21.3.2007


