Computing by Waiting and Guessing

Pekka Orponen

T-79.4001 Seminar on Theoretical Computer Science
21.3.2007

Outline

- 1. Problems and assumptions
- 2. Minimum-finding by waiting
- Waiting in rings
- Waiting in general networks
- Computing Boolean functions
- Randomised election
- 3. Minimum-finding by guessing
- The general protocol
- A natural guessing strategy
- The optimal guessing strategy
- Removing the constraints

1. Problems and Assumptions

- Focus on Minimum-Finding and Election in synchronous networks.
- Basic algorithms presented for unidirectional rings; simple extensions to other topologies.
- Assumptions:
- Minimum-Finding: R + Synch $(\mathbf{R}=\{$ Bidirectional Links, Connectivity, Total Reliability $\})$
- Election: R+Synch+ID

2. Minimum-Finding by Waiting

- Unidirectional ring of size n, each entity x has positive integer $\mathrm{id}(x)$ and knows n.
- Min-Find-Wait:
- 1. Entity x wakes up and waits for $f(\operatorname{id}(x), n)$ time units.
- 2. If nothing happens in this time, x determines "I am the smallest" and sends a Stop message.
- 3. If instead x receives a Stop message, it determines "I am not smallest" and forwards the message.
- If all entities wake up simultaneously and the waiting function f is monotone:

$$
\operatorname{id}(x)<\operatorname{id}(y) \Rightarrow f(\operatorname{id}(x), n)<f(\operatorname{id}(y), n)
$$

then minimal elements correctly determine their status.

- However the minimal elements must also eliminate the non-minimal ones ...
- For the elimination it suffices that

$$
i d(x)<\operatorname{id}(y) \Rightarrow f(\operatorname{id}(x), n)+d(x, y)<f(\operatorname{id}(y), n)
$$

where $d(x, y) \leq n-1$ is the distance from x to y.

- Thus in a ring one may choose $f(i, n)=i \cdot n$.
- Note: If elements have unique id's, then protocol also solves leader election.
- In case of non-simultaneous wake-up, when entity x wants to start the protocol it first sends its neighbour a Start message and then starts waiting.
- To account for the wake-up differences it suffices that

$$
i d(x)<\operatorname{id}(y) \Rightarrow f(\operatorname{id}(x), n)+2 d(x, y)<f(\operatorname{id}(y), n)
$$

i.e. in a ring one may choose $f(i, n)=2 i \cdot n$.

- In a bidirectional ring one needs in addition take care that each element forwards its messages in a consistent direction.

Comparison of minimum-finding protocols

Protocol	Bits	Time	Notes
Speed	$O\left(n \log i_{\max }\right)$	$O\left(2^{\left.i_{\max } n\right)}\right.$	
SynchStages	$O(n \log n)$	$O\left(i_{\max } n \log n\right)$	
Wait	$O(n)$	$O\left(i_{\max } n\right)$	n known

Waiting in general networks

- The waiting protocol actually works in exactly the same way in all (connected) networks, assuming the entities know (a bound on) the network diameter d.
- Min-Find-Wait:
- 1. Entity x wakes up either spontaneously or by a Start message from one of its neighbours; it sends/forwards Start to its neighbours.
- 2. Entity x waits for $f(\operatorname{id}(x))=2 \operatorname{id}(x)(d+1)$ time units.
- 3. If nothing happens in this time, x determines "I am the smallest" and sends its neighbours a Stop message.
- 4. If instead x receives a Stop message, it determines "I am not smallest" and forwards the Stop message.
- Correctness: Definition of the waiting function $f(i)$ guarantees that, if $t(z)$ is the wake-up time of entity z, then

$$
\mathrm{id}(x)<\operatorname{id}(y) \Rightarrow t(x)+f(\operatorname{id}(x))+d(x, y)<t(y)+f(\operatorname{id}(y))
$$

Application: computing Boolean functions

- Assume each entity x has a Boolean value $b(x) \in\{0,1\}$ and the goal is to have everyone know the AND of those values.
- Observe that in this case AND = Min, and apply the Min-Find-Wait protocol.
- Note that:

$$
f(b(x))= \begin{cases}2(d+1), & \text { if } b(x)=1 \\ 0, & \text { if } b(x)=0\end{cases}
$$

- Thus the time complexity of the protocol is $2(d+1)$ units, and the bit complexity is $\leq 2 n$ bits. (Can probably be decreased to just n.)
- The OR function can be computed by an analogous protocol.

Application: randomised election

- Assume n entities in a unidirectional ring. (Method can be generalised to also other topologies.)
- Entities know n but do not have identities. Because of symmetry, deterministic leader election is impossible. Symmetry can be broken by randomisation.
- Randomised-Election:
- 1. The protocol works in rounds.
- 2. In a round, each entity x chooses a random identity $b(x) \in\{0,1\}$ with $\operatorname{Pr}(b(x)=0)=1 / n, \operatorname{Pr}(b(x)=1)=1-1 / n$.
- 3. An entity x with $b(x)=0$ sends the signal Leader? to its neighbour and waits. Entities x with $b(x)=1$ just forward any possible Leader? signals.
- 4. If an entity x with $b(x)=0$ gets its Leader? signal back after exactly n time units, it will become the leader and sends a Terminate signal to notify the others. Otherwise it sends a Restart signal to initiate a new round.
- The bit and time complexity of each round is $O(n)$. How many rounds are needed?
- The probability that exactly one entity x chooses $b(x)=0$ is

$$
n \cdot \frac{1}{n} \cdot\left(1-\frac{1}{n}\right)^{n-1}=\left(1-\frac{1}{n}\right)^{n-1} \approx \frac{1}{e} \approx 0.37
$$

- Thus the number of rounds is geometrically distributed with parameter $p \approx 1 / e$, and so

$$
E[\# \text { rounds }]=\frac{1}{p} \approx e \approx 2.78
$$

and

$$
\operatorname{Pr}(\geq k \text { rounds needed })=(1-p)^{k-1} \approx(0.63)^{k-1}
$$

3. Guessing

- More precisely: distributed interval search.
- Consider again minimum finding in a unidirectional ring with n entities; all entities know the size of the ring and start simultaneously.
- Decide(p):
-1. Each entity x compares $p:: \operatorname{id}(x)$.
- 2. If $p \geq \operatorname{id}(x)$, then x decides "High" and sends signal High to neighbour.
- 3. If $p<\operatorname{id}(x)$ then x waits for any possible High-signals for n time units. If one is received, also x decides "High" and forwards the signal. If no High-signal is received, x decides "Low".
- Denote $i_{\text {min }}=\min \{i d(x)\}$. After one round of protocol Decide(p), all entities know whether $p \geq i_{\text {min }}$ ("High") or $p<i_{\text {min }}$ ("Low").
- The time complexity of one round is n units. The bit complexity of deciding "High" is n, and the bit complexity of deciding "Low" is 0 .
- The common goal of the entities ("players") is to determine the value $i_{\text {min }}$. They start at some guess $p=p_{1}$, and based on whether this was "High" or "Low" choose another guess $p=p_{2}$ etc. until $i_{\text {min }}$ can be determined.
- What is the optimal sequence of guesses p_{1}, p_{2}, \ldots ? Note that each guess costs n time units, but only high guesses incur a bit cost.
- Thus there is a tradeoff between time and bit cost. E.g. a simple linear search has expected time cost $O\left(n^{2}\right)$ and bit cost n; a binary search, assuming $i_{\min } \leq n$, has expected time and bit cost both $O(n \log n)$.
- Assume that $i_{\min } \in[1, M]$. Denote q total number of guesses, $k \leq q$ number of high guesses.
- Then a guessing strategy with given q, k costs $q n$ time and kn bits.
- E.g. for linear search: $k=1, q=M$ in the worst case.
- What is the nature of the k vs. q tradeoff? E.g. how much does allowing $k=2$ decrease q ?

A natural guessing strategy

- For $k=2$:
- 1. Partition the interval $[1, M]$ into $\lceil\sqrt{M}\rceil$ subintervals of length $\lceil\sqrt{M}\rceil$. (The last subinterval may be shorter than the others.)
- 2. Query first the endpoints of the subintervals, $p_{1}=\lceil\sqrt{M}\rceil-1$, $p_{2}=2\lceil\sqrt{M}\rceil-1, \ldots$ until one of the guesses is high or the last subinterval is reached.
- 3. Then search the relevant subinterval linearly.
- This strategy clearly has $k=2, q=2\lceil\sqrt{M}\rceil$. Thus, a linear increase in bit cost allows a superlinear decrease in time cost.
- The strategy can easily be generalised in a hierarchical way to arbitrary k, yielding $q=k M^{1 / k}$.
- Can we do better? If we want to keep the bit cost linear, then we must have $k=$ constant. What is the optimal way to allocate a given constant number of high guesses?

The optimal guessing strategy

- To find the optimal strategy, consider the quantity

$$
\begin{aligned}
h(q, k)= & \text { largest } M \text { such that interval }[1, M] \text { can be covered } \\
& \text { by } q \text { queries, out of which at most } k \leq q \text { are high. }
\end{aligned}
$$

- Then for $k=1$ we have:

$$
h(q, 1)=q,
$$

because linear search is the only safe strategy in this case.

- At the other extreme, binary search yields:

$$
h(q, q)=2^{q}-1 .
$$

- Consider an optimal strategy with q queries out of which k may be high.
- Let p be the first guess of the strategy. Now p may be either low or high as compared to the number being sought.
- If p is low, then we have $q-1$ queries left, including all our k high queries. Thus, for any initial low guess p, an interval of length $p+h(q-1, k)$ can be covered, and it seems ideal to make the first guess as large as possible.
- However, if the first guess p is high, then we only have $k-1$ high queries left, with which we must be able to cover all of the interval $[1, p]$. Thus the largest safe first guess is $p=h(q-1, k-1)$, and we get the recurrence equation:

$$
h(q, k)=h(q-1, k-1)+h(q-1, k) .
$$

- The recurrence equation with boundary conditions:

$$
\left\{\begin{array}{l}
h(q, k)=h(q-1, k-1)+h(q-1, k), \quad 1<k<q \\
h(q, 1)=1, \quad h(q, q)=2^{q}-1
\end{array}\right.
$$

has solution: ${ }^{1}$

$$
h(q, k)=\sum_{j=1}^{k}\binom{q}{j} .
$$

- The optimal guessing strategy for searching interval $[1, M]$ with at most k high guesses is thus:
-1. Query $p=h(q-1, k-1)$, where $q \geq k$ is smallest integer such that $M \leq h(q, k)$.
- 2. If p is low, then optimally search interval $[p+1, M]$ with at most k high guesses.
- 3. If p is high, then optimally search interval $[1, p]$ with at most $k-1$ high guesses.

[^0]
Removing the constraints

- Bounded interval: Use an initial sequence of monotonically increasing guesses $g(1)<g(2)<\ldots$ until one of them, say $g(t)$, is high. Then search interval $[g(t-1)+1, g(t)]$ using the optimal strategy. If e.g. $g(j)=2^{j}$, and one denotes

$$
r(M, k)=\min \{q \mid h(q, k) \geq M\}
$$

then

$$
r(*, k) \leq\left\lceil\log _{2} i_{\min }\right\rceil+r\left(i_{\min }, k-1\right)
$$

- Knowledge of n : The entities may use a common upper bound $\bar{n} \geq n .^{2}$
- Network topology: Assume the entities have a common upper bound \bar{d} on the network diameter d. Transform the protocol into a reset with signal High, initiated by entities with $i d(x) \leq p$. Use \bar{d} as the timeout value.
- Simultaneous start: Perform a wakeup before running the protocol and use a longer delay between successive guesses.

[^1]
Comparison of minimum-finding protocols

Protocol	Bits	Time	Notes
Speed	$O\left(n \log i_{\max }\right)$	$O\left(2^{\left.i_{\max } n\right)}\right.$	
SynchStages	$O(n \log n)$	$O\left(i_{\max } n \log n\right)$	
Wait	$O(n)$	$O\left(i_{\max } n\right)$	n known
Guess	$O(k n)$	$O\left(i_{\max }^{1 / k} k n\right)$	n known

[^0]: ${ }^{1}$ There's something wrong here: the recurrence should have an additional " +1 " on the r.h.s. for this to hold.

[^1]: ${ }^{2}$ There's also a method, discussed in Santoro's book Section 6.3.3., for combining the Waiting and Guessing methods to remove the dependence on the network size/diameter altogether.

