
Sorting a Distributed Set
Distributed Set Operations

Sorting and Other Distributed Set Operations
T-79.4001 Seminar on Theoretical Computer Science

Spring 2007 – Distributed Computation

Eero Häkkinen

2007-04-18

Based on sections 5.3-5.4 of
N. Santoro: Design and Analysis of Distributed Algorithms,

Wiley 2007.
Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

1 Sorting a Distributed Set
Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

2 Distributed Set Operations
Introduction
Intersection Difference Partitioning (IDP)
Local Evaluation
Global Evaluation

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Definitions (1/3)

Notation (1/2)
a local set Dx in an entity x

a distributed set D =
⋃
x

Dx

a distribution D = 〈Dx1 , Dx2 , . . . , Dxn〉 of D among the
entities x1, x2, . . . , xn

the number of data items N =
∑

x

|Dx |

a topology G of the network

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Definitions (2/3)

Notation (2/2)

a permutation π of the indices {1, 2, . . . , n}
an i th item π (i) of π
(if π = 〈2, 4, 1, 3〉, then π (2) = 4)

For Simplicity

id (xi) = i
Di denotes Dxi

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Definitions (3/3)

Sorting Condition

The distribution 〈D1, D2, . . . , Dn〉 is sorted according to π if and
only if the following sorting condition holds:

i < j ⇒ ∀d ′ ∈ Dπ(i), d ′′ ∈ Dπ(j) : d ′ < d ′′

Some Sorting Orders

increasing order: π = 〈1, 2, . . . , n〉
decreasing order: π = 〈n, (n − 1) , . . . , 1〉

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Sorting Problem

Sorting Problem

Then the initial distribution of D is D = 〈D1, D2, . . . , Dn〉, the
problem is to move data items among the entities so that the
final distribution of D is D′ =

〈
D′

1, D′
2, . . . , D′

n
〉

and the
distribution D′ is sorted according to π.

Notes
No relation is defined between Di and D′

i , yet. There are thus
multiple variations of the problem.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Sorting and Distribution Types

Fundamental Requirements
invariant-sized sorting:∣∣D′

i

∣∣ = |Di | , 1 ≤ i ≤ n
equidistributed sorting:∣∣∣D′

π(i)

∣∣∣ =

{ ⌈N
n

⌉
, if 1 ≤ i < n

N − (n − 1)
⌈N

n

⌉
, if i = n

compacted sorting:∣∣∣D′
π(i)

∣∣∣ =


w , if 1 ≤ i < N

w
N − (i − 1) w , if i =

⌈N
w

⌉
≤ n

0, if
⌈N

w

⌉
< i ≤ n

, where

w ≥
⌈N

n

⌉
is the storage capacity of the entities

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Description of OddEven-LineSort (1/2)

Restrictions
Standard restrictions R.
Ordered line: links

(
xπ(i), xπ(i+i)

)
, 1 ≤ i < n.

Origin
Based on the parallel algorithm odd-even-transposition
sort, which is based on the serial algorithm bubble sort.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Description of OddEven-LineSort (2/2)

Technique
1 In an odd iteration, entities xπ(2i+1) and xπ(2i+2),

0 ≤ i ≤
⌊n

2

⌋
− 1 exchange data items. The smallest items

are retained by xπ(2i+1) and the largest ones are retained
by xπ(2i+2).

2 In an even iteration, entities xπ(2i) and xπ(2i+1),
1 ≤ i ≤

⌊n
2

⌋
− 1 exchange data items. The smallest items

are retained by xπ(2i) and the largest ones are retained by
xπ(2i+1).

3 If no items change the place in an iteration other than the
first one, the process stops.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Properties of OddEven-LineSort

Complexity
Sorting an equidistributed distribution requires at most
n − 1 iterations if the required sorting is invariant-sized,
equidistributed or compacted.
Invariant-sized sorting requires at most N − 1 iterations.
T [OddEven−LineSortinvariant] = O (nN)

M [OddEven−LineSortinvariant] = O (nN)

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Description of OddEven-Merge (1/2)

Restrictions
Standard restrictions R.
Complete graph.

Initially

Sorted partial distributions
〈

A1, A2, . . . , D p
2

〉
and〈

A p
2 +1, A p

2 +2, . . . Ap

〉
.

For simplicity, p is a power of 2.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Description of OddEven-Merge (2/2)

Technique
1 If p = 2, there are two entities y1 and y2 containing sets A1

and A2. Entities y1 and y2 exchange data items. The
smallest items are retained by y1 and the largest ones are
retained by y2. This is a merge.

2 If p > 2,
1 Recursively OddEven-Merge partial distributions〈

A1, A3, . . . , A p
2−1

〉
and

〈
A p

2 +1, A p
2 +3, . . . , Ap−1

〉
.

2 Recursively OddEven-Merge partial distributions〈
A2, A4, . . . , A p

2

〉
and

〈
A p

2 +2, A p
2 +4, . . . , Ap

〉
.

3 Merge A2i and A2i+1, 1 ≤ i ≤ p
2 − 1.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Description of OddEven-MergeSort

Technique
1 Recursively OddEven-MergeSort the partial distribution〈

D1, D2, . . . , D n
2

〉
.

2 Recursively OddEven-MergeSort the partial distribution〈
D n

2 +1, D n
2 +2, . . . , Dn

〉
.

3 OddEven-Merge partial distributions
〈

D1, D2, . . . , D n
2

〉
and〈

D n
2 +1, D n

2 +2, . . . , Dn

〉
.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Properties of OddEven-MergeSort

Complexity
Sorting requires at most 1 + log n iterations.
M [OddEven−MergeSort] = O (N log n)

Correctness
Does it work? Not always.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Lower Bounds – Analysis

Sorting Problem (recapitulation)

Then the initial distribution of D is D = 〈D1, D2, . . . , Dn〉, the
problem is to move data items among the entities so that the
final distribution of D is D′ =

〈
D′

1, D′
2, . . . , D′

n
〉

and the
distribution D′ is sorted according to π.

Messages∣∣∣Di ∩ D′
j

∣∣∣ items to be moved from xi to xj .

At least dG
(
xi , xj

)
messages for each item to be moved.

The total cost at least C (D, G, π) =
∑
i 6=j

∣∣∣Di ∩ D′
j

∣∣∣ dG
(
xi , xj

)
.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Lower Bounds – Values

Ordered Line

C (D, G, π) =
∑
i 6=j

∣∣∣Di ∩ D′
j

∣∣∣ dG
(
xi , xj

)
= Ω(nN)

OddEven-LineSort has O (nN). The same!

Complete Graph

C (D, G, π) =
∑
i 6=j

∣∣∣Di ∩ D′
j

∣∣∣ dG
(
xi , xj

)︸ ︷︷ ︸
=1

= Ω(N)

OddEven-MergeSort has O (N log n).

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Description of SelectSort

Technique
1 Entity xπ(j) broadcasts the number of items kj it must end

up with.
2 The entities find the kj th smallest item bj still under

consideration using a distributed selection algorithm.
3 The item bj is broadcasted.
4 Each entity assigns items which are still under

consideration and smaller or equal to bj to be sent to xπ(j).

After n − 1 iterations, items are sent to their destinations using
the shortest paths.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Properties of SelectSort

Properties
Generic regarding topology.
Correct if the distributed selection algorithm is correct.
Additional cost of iterations is∑
1≤i≤n−1

M [ki , N − Ki−1] =

M [Rank]
∑

1≤i≤n−1

log (min {ki , N − Ki + 1}) + l .o.t .

If N � n (for instance N ≥ n2 log n) in a complete graph,
the additional cost is o (N) and the total cost is O (N).

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Description of DynamicSelectSort

Protocol

begin
for j = i,...,n-1 do

Collectively determine bj = D[kj] using distributed selection;
Di,j := d ∈ Di : bj−1 < d ≤ bj ;
ni (j) := |Di,j |;

end
Di,n := d ∈ Di : bn−1 < d ;
ni (n) := |Di,n|;
if xi 6= x then

send 〈ni (1) , . . . , ni (n)〉 to x ;
else

wait until receive information from all entities;
determine π and notify all entities;

end
send Di (j) to xπ(j), i ≤ j ≤ n;

end

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
OddEven-LineSort
OddEven-MergeSort
Lower Bounds
SelectSort
DynamicSelectSort

Properties of DynamicSelectSort

Properties
Selects a permutation which results the least amount of
items to be moved.
Sorts according to the selected permutation.
Does not move items if already sorted.

Additional cost is
∑

x

(|N (x)|+ 2n) dG (x , x).

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
Intersection Difference Partitioning (IDP)
Local Evaluation
Global Evaluation

Operations on Distributed Sets (1/2)

Notation
sets A, B, C, . . .

an entity x (A) , x (B) , x (C) , . . . owning the corresponding
set
an entity x making a query
a strategy Si to find the result of a query

Query Expression Example

A ∪ ((B ∩ C) \ (B ∩ D))

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
Intersection Difference Partitioning (IDP)
Local Evaluation
Global Evaluation

Operations on Distributed Sets (2/2)

Costs of Some Strategies

Vol(S1) = |A|︸︷︷︸
x(A)→x

+ |B|︸︷︷︸
x(B)→x

+ |C|︸︷︷︸
x(C)→x

+ |D|︸︷︷︸
x(D)→x

Vol(S2) =
|B|︸︷︷︸

x(B)→x(C)

+ |B ∩ C|︸ ︷︷ ︸
x(C)→x(D)

+ |(B ∩ C) \ D|︸ ︷︷ ︸
x(D)→x(A)

+ |A ∪ ((B ∩ C) \ D)|︸ ︷︷ ︸
x(A)→x

Vol(S3) =
|C|︸︷︷︸

x(C)→x(D)

+ |C \ D|︸ ︷︷ ︸
x(D)→x(B)

+ |A|︸︷︷︸
x(A)→x(B)

+ |A ∪ (B ∩ (C \ D))|︸ ︷︷ ︸
x(B)→x

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
Intersection Difference Partitioning (IDP)
Local Evaluation
Global Evaluation

Description of Intersection Difference Partitioning

Motivation
Some queries can be evaluated locally.

Intersection Difference Partitioning (IDP)

Z i
0,1 = Di

S1, S2, . . . are sets D1, D2, . . . excluding Di

Z i
l+1,2j−1 = Z i

l,j ∩ Sl+1

Z i
l+1,2j = Z i

l,j \ Sl+1

Z i
n−1,j = Z i

j

Zi =
〈
Z i

1, Z i
2, . . . , Z i

2n−1

〉
is a partition of Di and denotes it.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
Intersection Difference Partitioning (IDP)
Local Evaluation
Global Evaluation

Example of IDP

Partitioning

D1 = Z 1
0,1 = {a, b, e, f , g, m, n, q}

Z 1
1,1 = {a, e, f , g} Z 1

1,2 = {b, m, n, q}
Z 1

2,1 = {e, f} Z 1
2,2 = {a, g} Z 1

2,3 = {m, q} Z 1
2,4 = {b, n}

D2 = Z 2
0,1 = {a, e, f , g, o, p, r , u, v}

Z 2
1,1 = {a, e, f , g} Z 2

1,2 = {o, p, r , u, v}
Z 2

2,1 = {e, f} Z 2
2,2 = {a, g} Z 2

2,3 = {p, r , v} Z 2
2,4 = {o, u}

D3 = Z 3
0,1 = {e, f , m, p, q, r , v}

Z 3
1,1 = {e, f , m, q} Z 3

1,2 = {p, r , v}
Z 3

2,1 = {e, f} Z 3
2,2 = {m, q} Z 3

2,3 = {p, r , v} Z 3
2,4 = {}

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
Intersection Difference Partitioning (IDP)
Local Evaluation
Global Evaluation

Properties of IDP

Expressions

Z i
l,j =

⋃
1≤k≤2n−1−l

Z i
k+(j−1)2n−1−l

Di =
⋃

1≤j≤2l

Z i
l,j =

⋃
1≤j≤2n−1

Z i
j

Di ∩ Sl =
⋃

1≤j≤2l−1

Z i
l,2j−1 =

⋃
1≤j≤2l−1

1≤k≤2n−1−l

Z i
k+(j−1)2n−l

Di \ Sl =
⋃

1≤j≤2l−1

Z i
l,2j =

⋃
1≤j≤2l−1

1≤k≤2n−1−l

Z i
k+(2j−1)2n−l−1

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
Intersection Difference Partitioning (IDP)
Local Evaluation
Global Evaluation

Local Evaluation Using IDP

Local Queries
If an expression E can be evaluated locally and an
expression E ′ is an arbitrary local expression, then E ∩ E ′

can be evaluated locally.
The same is true for E \ E ′.
If an expressions E1 and E2 can be evaluated locally, then
E1 ∪ E2 can be evaluated locally.

Properties
No messages are sent.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
Intersection Difference Partitioning (IDP)
Local Evaluation
Global Evaluation

Global Evaluation (1/2)

Technique
1 x decomposes a query Q into sub-queries Q1, Q2, . . . , Qk

which satisfy the following properties:
∀Qj : ∃yj : Qj ∈ E (yj), where E (yj) is the sets of
expressions yj can evaluate locally.
∀i 6= j : Qi ∩Qj = ∅
Q =

⋃
1≤j≤k Qj

2 x sends Qjs to yjs.
3 yj evaluates Qj locally and sends the result to x .
4 x computes the union of all received results.

Eero Häkkinen Sorting and Other Distributed Set Operations

Sorting a Distributed Set
Distributed Set Operations

Introduction
Intersection Difference Partitioning (IDP)
Local Evaluation
Global Evaluation

Global Evaluation (2/2)

Properties
Each result item is sent only once.
Data transfer optimal.

Eero Häkkinen Sorting and Other Distributed Set Operations

	Sorting a Distributed Set
	Introduction
	OddEven-LineSort
	OddEven-MergeSort
	Lower Bounds
	SelectSort
	DynamicSelectSort

	Distributed Set Operations
	Introduction
	Intersection Difference Partitioning (IDP)
	Local Evaluation
	Global Evaluation

