
Universal Election Protocols

Sec. 3.8

Risto Hakala

February 28, 2007



Outline

◮ Universal election protocols in general

◮ Description and analysis of

1. Mega-Merger
2. Yo-Yo

◮ Complexity of the universal election problem

◮ Summary

Risto Hakala Universal Election Protocols



Universal Election Protocols

◮ So far, the election problem has been studied only in specific
topologies.

◮ Universal election protocols are election protocols that do not
require a priori knowledge of the network topology.

◮ Mega-Merger works by constructing a rooted spanning tree.
◮ Efficient, but complex in terms of specifications and analysis.

◮ Yo-Yo is a minimum-finding protocol.
◮ Simple to specify and to prove correct, but its real cost is still

unknown.

◮ The restriction IR is assumed.

Risto Hakala Universal Election Protocols



Mega-Merger

Basic principles

◮ Constructs a rooted spanning tree of the network, where the
root is the elected leader in the final spanning tree.

◮ Rooted spanning trees are merged together until a tree which
covers the whole network has been constructed.

◮ An analogy of cities being merged together is used in the
description of the protocol.

Risto Hakala Universal Election Protocols



Mega-Merger

Concepts and notions

◮ A city is a rooted tree; the nodes are called districts, and the
root is also known as downtown.

◮ Each city has a level and a unique name; all districts
eventually know the name and the level of their city.

◮ Edges are roads, each with a distinct distance. The city roads
are only those serviced by public transport.

◮ Initially, each node is a city with just one district, itself, and
no roads. All cities are initially at the same level.

Risto Hakala Universal Election Protocols



Mega-Merger

A city

Risto Hakala Universal Election Protocols



Mega-Merger

Merging

◮ A city A must merge with its closest neighboring city B. To
request merging a Let-us-merge message is sent on the
shortest road e(A) connecting it to B.

◮ The decision to request for a merger must originate from the
downtown and until the request is resolved, no other request
can be issued from that city.

◮ When a merger occurs, the roads of the new city serviced by
public transports will be the roads of the two cities already
serviced plus the shortest road connecting them.

◮ The level and name of the new city is adjusted depending on
how the merging has been done.

Risto Hakala Universal Election Protocols



Mega-Merger

Merging (absorption, friendly merger, suspension)

◮ If level(A) = level(B) and e(A) = e(B), then A and B

perform a friendly merger.

◮ If level(A) < level(B), A is absorbed in B.

◮ If level(A) = level(B), but e(A) 6= e(B), then the merge
process is suspended until level(A) < level(B).

◮ If level(A) > level(B), the merge process is suspended: x will
locally enqueue the message until level(A) ≤ level(B).

Risto Hakala Universal Election Protocols



Mega-Merger

Absorption

Risto Hakala Universal Election Protocols



Mega-Merger

Friendly merger

Risto Hakala Universal Election Protocols



Mega-Merger

Choosing the merging edge e(A)

1. Each district ai of A determines the length di of the shortest
road to another city C

◮ For this purpose, an Outside? message is sent.

2. The downtown D(A) computes the smallest of all the di

◮ Same as finding the minimum in a rooted tree.

When determining the length di , the district ai needs not to
consider internal roads. However, there may be internal unused
roads, which need to be considered, since ai does not know
whether such roads are internal or not.

Risto Hakala Universal Election Protocols



Mega-Merger

Responding to the Outside? message

◮ If name(A) = name(C ), c will reply with Internal to ai and
the road will be marked as internal. The process is restarted.

◮ If name(A) 6= name(C ) and level(C ) ≥ level(A), c will reply
with External to ai and di will be set.

◮ If name(A) 6= name(C ) and level(C ) < level(A), c will
postpone the reply until level(C ) ≥ level(A).

This completes the specification of Mega-Merger.

Risto Hakala Universal Election Protocols



Analysis of Mega-Merger

Progress and deadlock

◮ Complex scenarios can occure due to concurrency,
postponements, and communication delays.

◮ Because of this complexity, there is no satisfactory complete
proof of the correctness of the Mega-Merger protocol.

◮ It can be proven, however, that Mega-Merger

1. is deadlock free and ensures progress; and
2. correctly elects a leader.

Risto Hakala Universal Election Protocols



Analysis of Mega-Merger

Cost

◮ The total cost of Mega-Merger can be determined considering
the number of levels, the number of messages per level, and
the number of useless messages.

◮ The total number of messages is

M[Mega-Merger] ≤ 2m + 5n log n + n + 1,

where m is the number of links and n is the number of nodes.

◮ In fact, Mega-Merger is worst case optimal, i.e.,
O(m + n log n).

Risto Hakala Universal Election Protocols



Analysis of Mega-Merger

Minimum-cost spanning trees

◮ Minimum-cost spanning trees are important for determining,
e.g., the spanning tree where broadcasting is the cheapest.

◮ Mega-Merger creates minimum-cost spanning trees even when
the links have no values asigned to them.

◮ The design complexity of Mega-Merger is its main drawback,
since it makes any actual implementation difficult to verify.

Risto Hakala Universal Election Protocols



Yo-Yo

Main principles

◮ Yo-Yo is a minimum-finding algorithm.

◮ Unlike the previous protocol, Yo-Yo has simple specifications,
and its correctness is simple to establish.

◮ The Yo-Yo algorithm consists of two parts: a preprocessing
phase and a sequence of iterations.

◮ Each iteration is composed of phases YO- and -YO.

Risto Hakala Universal Election Protocols



Yo-Yo

The setup phase

◮ Every entity x exchanges its id with its neighbours.

◮ Then, x will logically orient each incident link (x , y) in the
direction of the entity with the largest id.

◮ This results in a directed acyclic graph (DAG), where there
are three types of nodes:

◮ source is a node where all the links are out-edges.
◮ sink is a node where all the links are in-edges.
◮ internal node is a node, which is neither a source nor a sink.

◮ The source nodes are the candidates for the minimum in the
iteration phase, where iterations remove candidates from
consideration.

Risto Hakala Universal Election Protocols



Yo-Yo

A directed acyclic graph

Risto Hakala Universal Election Protocols



Yo-Yo

Iteration (YO- phase)

◮ This phase is started by the sources and its purpose is to
propagate to each sink the smallest among the values of the
sources connected to that sink.

1. A source sends its value down to all its out-neighbours.
2. An internal node waits until it receives a value from all its

in-neighbours. It then computes the minimum of all received
values and sends it down to its out-neighbours.

3. A sink waits until it receives a value from all its in-neighbours.
It then computes the minimum of all received values and starts
the second part of the iteration.

Risto Hakala Universal Election Protocols



Yo-Yo

Iteration (YO- phase)

Risto Hakala Universal Election Protocols



Yo-Yo

Iteration (-YO phase)

◮ This phase is started by the sinks and its purpose is to
eliminate some candidates by transforming some sources into
sinks or internal nodes.

4. A sink sends YES to all in-neighbours from which the smallest
value has been received. It sends NO to all others.

5. An internal node waits until it receives a vote from all its
out-neighbours. If all votes are YES, it sends YES to all
in-neighbours from which the smallest has been received and
NO to all the others; otherwise, it sends NO to all its
in-neighbours.

6. A source waits until it receives a vote from all its
out-neighbours. If all votes are YES, it survives; otherwise, it is
no longer a candidate.

Risto Hakala Universal Election Protocols



Yo-Yo

Iteration (-YO phase)

Risto Hakala Universal Election Protocols



Yo-Yo

Iteration (-YO phase)

◮ Directions of the links must be modified so that only the
sources that are still candidates will still be sources.

7. When a node sends NO to an in-neighbour, it will reverse the
direction of that link.

8. When a node receives NO from an out-neighbour, it will
reverse the direction of that link.

The iteration phase is repeated until there is only one candidate
left.

Risto Hakala Universal Election Protocols



Yo-Yo

Pruning

◮ Applying an iteration to a DAG with more than one source
will result into a DAG with fewer sources. The source with
smallest value will still be a source.

◮ Therefore, the source with the smallest value will be the only
one left under consideration.

◮ Additional mechanisms are needed for the smallest node to
distinguish that the process shoud end.

◮ Pruning is used to ensure the termination of the process.

Risto Hakala Universal Election Protocols



Yo-Yo

Pruning

◮ The purpose of pruning is to remove from the computation,
nodes and links that are useless.

◮ Pruning is achieved through the following rules:

9. If a sink is a leaf, then it is useless and asks its parent to be
pruned.

10. In in the YO- phase, a node receives the same value from more
than one in-neighbour, it will ask all of them except one to
prune the link connecting them.

◮ Pruning is performed during the -YO phase by declaring links
useless.

◮ If the DAG has a single source, then the new DAG is
composed of only one node, the source, after an iteration.

Risto Hakala Universal Election Protocols



Analysis of Yo-Yo

Costs

◮ Without pruning, the total cost of Yo-Yo is

M[Yo-Yo (without pruning)] ≤ 2m log n + l .o.t.

◮ In other words, the total cost is O(m log n) messages.

◮ The real cost (with pruning) is an open research problem.

Risto Hakala Universal Election Protocols



Complexity of the Universal Election Problem

◮ What is the complexity of the election problem in general?

◮ It can be shown that, under IR, constructing a spanning tree
SPT and universal election Elect are computationally
equivalent

Elect(IR) ≡ SPT(IR)

but also that they have the same complexity:

M(Elect/IR) = M(SPT/IR).

Risto Hakala Universal Election Protocols



Summary

◮ Universal election protocols work without knowledge of the
network topology.

◮ Mega-Merger is an efficient protocol that constructs a rooted
spanning tree of the network, where the root is the elected
leader.

◮ Yo-Yo is a minimum-finding protocol with a more simple
specification than Mega-Merger.

◮ Under IR, constructing a spanning tree and universal election
are computationally equivalent.

Risto Hakala Universal Election Protocols


