T-79.3001 Logic in computer science: foundations
Spring 2008
Exercise 2 ([NS 1997], Chapter I, Sections 2 and 3)
February 6-8, 2008

Solutions to demonstration problems

Solution to Problem 4

- We denote the proposition with ϕ and choose the truth values for A and B according to \mathcal{A}.

A	B	$\neg A$	$\neg B$	$\neg B \rightarrow \neg A$	$\neg B \rightarrow A$	$(\neg B \rightarrow A) \rightarrow B$	ϕ
F	F	T	T	T	F	T	T

- Using the definition:
- According to the definition $A \notin \mathcal{A}$ iff $\mathcal{A} \not \models A$. Similarly $B \notin \mathcal{A}$ iff $\mathcal{A} \notin B$.
- Based on the definition of negation $\mathcal{A} \not \models A$ iff $\mathcal{A} \models \neg A$ and $\mathcal{A} \not \models B$ iff $\mathcal{A}=\neg B$.
- Since $\mathcal{A} \models \neg A$, it holds $\mathcal{A} \models \neg B \rightarrow \neg A$.
- Since $\mathcal{A} \not \vDash A$ and $\mathcal{A} \models \neg B$, we have $\mathcal{A} \not \vDash \neg B \rightarrow A$.
- Because $\mathcal{A} \not \models \neg B \rightarrow A$, it holds $\mathcal{A} \models(\neg B \rightarrow A) \rightarrow B$.
- Since $\mathcal{A} \models(\neg B \rightarrow A) \rightarrow B$, we have $\mathcal{A} \models \phi$.

Solution to Problem 5

a) We use \perp and \rightarrow

$$
\begin{aligned}
& \neg A \equiv A \rightarrow \perp \\
& A \vee B=\neg A \rightarrow B \equiv(A \rightarrow \perp) \rightarrow B \\
& A \wedge B=\neg(\neg A \vee \neg B)=\neg(A \rightarrow \neg B)=\neg(A \rightarrow(B \rightarrow \perp)) \equiv \\
& (A \rightarrow(B \rightarrow \perp)) \rightarrow \perp \\
& A \leftrightarrow B=(A \rightarrow B) \wedge(B \rightarrow A) \equiv \\
& ((A \rightarrow B) \rightarrow((B \rightarrow A) \rightarrow \perp)) \rightarrow \perp
\end{aligned}
$$

b) Sheffer stroke is defined as $A \mid B=\neg(A \wedge B)$.

$$
\begin{aligned}
& \neg A \equiv A \mid A \\
& A \wedge B=\neg(A \mid B) \equiv(A \mid B) \mid(A \mid B) \\
& A \vee B=\neg(\neg A \wedge \neg B)=(\neg A \mid \neg B) \equiv(A \mid A) \mid(B \mid B) \\
& A \rightarrow B=\neg A \vee B=\neg(A \wedge \neg B)=(A \mid \neg B) \equiv(A \mid(B \mid B)) \\
& A \leftrightarrow B=A \rightarrow B \wedge B \rightarrow A=(A \mid(B \mid B)) \wedge(B \mid(A \mid A)) \equiv \\
& ((A \mid(B \mid B)) \mid(B \mid(A \mid A))) \mid((A \mid(B \mid B)) \mid(B \mid(A \mid A)))
\end{aligned}
$$

Solution to Problem 6

All possibilities are listed in the following table.

p_{0}	t	t	f	f
p_{1}	t	f	t	f
$p_{0} \vee \neg p_{0}$	t	t	t	t
$p_{0} \vee p_{1}$	t	t	t	f
$p_{1} \rightarrow p_{0}$	t	t	f	t
p_{0}	t	t	f	f
$p_{0} \rightarrow p_{1}$	t	f	t	t
p_{1}	t	f	t	f
$p_{0} \leftrightarrow p_{1}$	t	f	f	t
$p_{0} \wedge p_{1}$	t	f	f	f

p_{0}	t	t	f	f
p_{1}	t	f	t	f
$p_{0} \mid p_{1}$	f	t	t	t
$\neg\left(p_{0} \leftrightarrow p_{1}\right)$	f	t	t	f
$\neg p_{1}$	f	t	f	t
$\neg\left(p_{0} \rightarrow p_{1}\right)$	f	t	f	f
$\neg p_{0}$	f	f	t	t
$\neg\left(p_{1} \rightarrow p_{0}\right)$	f	f	t	f
$p_{0} \downarrow p_{1}$	f	f	f	t
$p_{0} \wedge \neg p_{0}$	f	f	f	f

Solution to Problem 7

Definition of Sheffer stroke: $A \mid B \equiv \neg(A \wedge B)$.
Definition of Peirce arrow: $A \downarrow B \equiv \neg(A \vee B)$.

$$
\begin{aligned}
\neg \alpha & \equiv \alpha \downarrow \alpha . \\
(\alpha \wedge \beta) & \equiv \neg(\neg \alpha \vee \neg \beta) \equiv(\neg \alpha \downarrow \neg \beta) \equiv(\alpha \downarrow \alpha) \downarrow(\beta \downarrow \beta) . \\
A \mid B \equiv \neg(\alpha \wedge \beta) & \equiv((\alpha \downarrow \alpha) \downarrow(\beta \downarrow \beta)) \downarrow((\alpha \downarrow \alpha) \downarrow(\beta \downarrow \beta)) .
\end{aligned}
$$

Solution to Problem 8

a) We will use atomic propositions $P 1, K 1$ and $V 1$ to denote respectively that the lamp post 1 has red, yellow and green light on (the letters come from the initial letters of the colors in Finnish). Let $P 2, K 2$ and $V 2$ be the corresponding propositions for lamp post 2 . Now we'll go through each requirement and present the set of propositions that correspond to the requirement.
(i) For lamp post 1 we need proposition $P 1 \vee K 1 \vee V 1$ (at least one lamp is alight) and propositions $P 1 \rightarrow \neg K 1 \wedge \neg V 1, K 1 \rightarrow \neg P 1 \wedge \neg V 1, V 1 \rightarrow$
$\neg P 1 \wedge \neg K 1$ (at most one lamp is alight). Also, corresponding propositions are needed for lamp post 2.
(ii) The needed proposition is $\neg(V 1 \wedge V 2)$.
(iii) We need propositions $P 1 \rightarrow(K 2 \vee V 2)$ and $P 2 \rightarrow(K 1 \vee V 1)$.
b) Let's construct a truth table for the above set of propositions. We'll use a shorthand notation α_{i} for propositions $(P i \vee K i \vee V i) \wedge(P i \rightarrow \neg K i \wedge \neg V i) \wedge$ $(K i \rightarrow \neg P i \wedge \neg V i) \wedge(V i \rightarrow \neg P i \wedge \neg K i)$ (which means that the lamp post i has exactly one light on). The rows marked with stars are models of the set of propositions.

P1 K1V1P2 K2V2	α_{1}	α_{2}	$\neg(V 1 \wedge V 2)$	$P 1 \rightarrow(K 2 \vee V 2)$	$P 2 \rightarrow(K 1 \vee V 1)$	
F F F F F F	F	F	T	T	T	
F F F F F T	F	T	T	T	T	
F F F F T F	F	T	T	T	T	
F F F F T T	F	F	T	T	T	
F F F T F F	F	T	T	T	F	
F F F T F T	F	F	T	T	F	
F F F T T F	F	F	T	T	F	
F F F F T T T T	F	F	T	T	F	
F F F T F F F	T	F	T	T	T	
F F T F F T	T	T	F	T	T	
F F T F T F	T	T	T	T	T	*
F F T F T T	T	F	F	T	T	
F F T T F F	T	T	T	T	T	*
F F T T F T	T	F	F	T	T	
F F T T T F	T	F	T	T	T	
F F T T T T T	T	F	F	T	T	
F T F F F F	T	F	T	T	T	
F T F F F T	T	T	T	T	T	*
F T F F T F	T	T	T	T	T	*
F T F F T T	T	F	T	T	T	
F T F T F F	T	T	T	T	T	*
F T F T F T	T	F	T	T	T	
F T F T T F	T	F	T	T	T	
F T F T T T	T	F	T	T	T	

P1 K1V1P2 K2V2	α_{1}	α_{2}	$\neg(V 1 \wedge V 2)$	$P 1 \rightarrow(K 2 \vee V 2)$	$P 2 \rightarrow(K 1 \vee V 1)$	
F T T F F F	F	F	T	T	T	
F T T F F T	F	T	F	T	T	
F T T F T F	F	T	T	T	T	
F T T F T T	F	F	F	T	T	
F T T T F F	F	T	T	T	T	
F T T T F T	F	F	F	T	T	
F T T T T F	F	F	T	T	T	
F T T T T T	F	F	F	T	T	
T F F F F F	T	F	T	F	T	
T F F F F T	T	T	T	T	T	*
T F F F T F	T	T	T	T	T	*
T F F F T T	T	F	T	T	T	
T F F T F F	T	T	T	F	F	
T F F T F T	T	F	T	T	F	
T F F T T F	T	F	T	T	F	
T F F T T T	T	F	T	T	F	
T F T F F F	F	F	T	F	T	
T F T F F T	F	T	F	T	T	
T F T F T F	F	T	T	T	T	
T F T F T T	F	F	F	T	T	
T F T T F F	F	T	T	F	T	
T F T T F T	F	F	F	T	T	
T F T T T F	F	F	T	T	T	
T F T T T T	F	F	F	T	T	
T T F F F F	F	F	T	F	T	
T T F F F T	F	T	T	T	T	
T T F F T F	F	T	T	T	T	
T T F F T T	F	F	T	T	T	
T T F T F F	F	T	T	F	T	
T T F T F T	F	F	T	T	T	
T T F T T F	F	F	T	T	T	
T T F T T T	F	F	T	T	T	
T T T F F F	F	F	T	F	T	
T T T F F T	F	T	F	T	T	
T T T F T F	F	T	T	T	T	
T T T F T T	F	F	F	T	T	
T T T T F F	F	T	T	F	T	
T T T T F T	F	F	F	T	T	
T T T T T F	F	F	T	T	T	
T T T T T T	F	F	F	T	T	

There are seven models (out of $2^{6}=64$ valuations). The claim "both red lights are not on at the same time" can be formalized as $\neg(P 1 \wedge P 2)$. Examining the models we can see that the proposition $\neg(P 1 \wedge P 2)$ is true in each of them (check it), so it is a logical consequence of the set of propositions.
c) The claim "the yellow light is alight on both traffic lights" translates into proposition $K 1 \wedge K 2$. Let \mathcal{A}_{1} be a truth assignment that maps $K 1$ and $K 2$ to true and all other atomic propositions to false, that is, $\mathscr{A}_{1}=\{K 1, K 2\}$. Now, $\mathcal{A}_{1} \models(K 1 \wedge K 2)$, since $\mathcal{A}_{1} \models K 1$ ja $\left.\mathcal{A}_{1} \models K 2\right)$. In addition $\mathcal{A}_{1} \models \alpha$ holds for all propositions α in item (a) (check!). Thus \mathcal{A}_{1} is a model of the set of propositions, where $K 1 \wedge K 2$ is true. Let \mathcal{A}_{2} be a truth assignment that maps propositions $V 1$ and $V 2$ to true and all other atomic propositions to false, that is, $\mathcal{A}_{2}=\{V 1, V 2\}$. Now $\mathcal{A}_{2} \not \vDash \neg(V 1 \wedge V 2)$, and thus the set of propositions is not satisfied in \mathcal{A}_{2}.
d) The requirements are not sufficient, because in real life red and yellow lights may be on at the same time. It is possible to lighten the conditions of (i) to allow this (think how this may be done by yourself). A worse problem is that the propositions don't specify the working order of the lights (e.g. that the yellow light should follow the green one). It is quite difficult to model this kind of behaviour with propositional logic.

Solution to Problem 9

a) Components of $(A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C))$ are: $A, B, C, A \rightarrow B, A \rightarrow$ $C, B \rightarrow C,(B \rightarrow C) \rightarrow(A \rightarrow C)$ and itself (we denote it by ϕ). Proposition ϕ is valid iff ϕ is true in all possible truth assignments.

A	B	C	$A \rightarrow B$	$A \rightarrow C$	$B \rightarrow C$	$(B \rightarrow C) \rightarrow(A \rightarrow C)$	ϕ
T							
T	T	F	T	F	F	T	T
T	F	T	F	T	T	T	T
T	F	F	F	F	T	F	T
F	T						
F	T	F	T	T	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

The last column only contains T and thus ϕ is valid.
b) The proposition is unsatisfiable iff all the values in the column of the truth table corresponding to it are F.
c)

A	B	$A \leftrightarrow B$	$\neg A \leftrightarrow \neg B$
T	T	T	T
T	F	F	F
F	T	F	F
F	F	T	T

Since the columns for $A \leftrightarrow B$ and $\neg A \leftrightarrow \neg B$ are identical, the propositions are logically equivalent.
d)

A	B	C	$(A \wedge B) \vee(C \wedge A)$	$(A \wedge B) \vee \neg B$	$A \vee(C \wedge \neg B)$
T	T	T	T	T	$T \star$
T	T	F	T	T	$T \star$
T	F	T	T	T	$T \star$
T	F	F	F	T	T
F	T	T	F	F	F
F	T	F	F	F	F
F	F	T	F	T	T
F	F	F	F	T	F

The claim holds, because $A \vee(C \wedge \neg B)$ has the value T in all the lines in which $(A \wedge B) \vee(C \wedge A)$ and $(A \wedge B) \vee \neg B$ get the value T (marked with \star).

Solution to Problem 10

Proof by induction.
Basic case: Let ϕ be an atomic proposition, that is, $A t(\phi)=\{\phi\}$. By the definition of intersection either $\phi \in \mathcal{A}_{1}$ and $\phi \in \mathcal{A}_{2}$, which implies $\mathcal{A}_{1} \models \phi$ and $\mathcal{A}_{2} \models \phi$, or $\phi \notin \mathcal{A}_{1}$ and $\phi \notin \mathcal{A}_{2}$, which implies $\mathcal{A}_{1} \not \models \phi$ and $\mathcal{A}_{2} \not \models \phi$. Thus $\mathcal{A}_{1} \models \phi \Longleftrightarrow \mathcal{A}_{2} \models \phi$. Induction hypothesis: The claim holds for all ϕ that have at most n connectives. Induction step: Let ϕ a proposition that has $n+1$ connectives. Let's do a case analysis for different connectives.

1. Let ϕ be of the form $\neg \alpha$. Now, by induction hypothesis, the claim holds for proposition α. If $\mathcal{A}_{1} \models \alpha$ and $\mathcal{A}_{2} \models \alpha$, then $\mathcal{A}_{1} \not \vDash \neg \alpha$ and $\mathcal{A}_{2} \not \vDash \neg \alpha$. On the other hand, if $\mathcal{A}_{1} \not \models \alpha$ and $\mathcal{A}_{2} \not \models \alpha$, then $\mathcal{A}_{1} \models \neg \alpha$ and $\mathcal{A}_{2} \models \neg \alpha$. Thus the claim holds, if ϕ is of the form $\neg \alpha$.
2. Let ϕ be of the form $\alpha \wedge \beta$. The claim holds for both α and β by the induction hypothesis. There are four possible cases.

- If $\mathcal{A}_{1} \models \alpha, \mathcal{A}_{2} \models \alpha, \mathcal{A}_{1} \models \beta$ and $\mathcal{A}_{2} \models \beta$, then it holds $\mathcal{A}_{1} \models \alpha \wedge \beta$ and $\mathcal{A}_{2} \models \alpha \wedge \beta$.
- If $\mathcal{A}_{1} \models \alpha, \mathcal{A}_{2} \models \alpha, \mathcal{A}_{1} \not \models \beta$ and $\mathcal{A}_{2} \not \models \beta$, then it holds $\mathcal{A}_{1} \not \models \alpha \wedge \beta$ and $\mathcal{A}_{2} \not \vDash \alpha \wedge \beta$.
- If $\mathcal{A}_{1} \not \models \alpha, \mathcal{A}_{2} \not \models \alpha, \mathcal{A}_{1} \models \beta$ and $\mathcal{A}_{2} \models \beta$, then it holds $\mathcal{A}_{1} \not \vDash \alpha \wedge \beta$ and $\mathcal{A}_{2} \not \vDash \alpha \wedge \beta$.
- If $\mathcal{A}_{1} \not \models \alpha, \mathcal{A}_{2} \not \models \alpha, \mathcal{A}_{1} \not \models \beta$ and $\mathcal{A}_{2} \not \models \beta$, then it holds $\mathcal{A}_{1} \not \models \alpha \wedge \beta$ and $\mathcal{A}_{2} \notin \alpha \wedge \beta$.

Thus, the claim holds if ϕ is of the form $\alpha \wedge \beta$.
3. Go similarly through the other connectives based on their definitions.

