T-79.3001 Logic in computer science: foundations
Spring 2008 Exercise 12 ([Huth \& Ryan, 2000], Chapter 4)
Apr 29-30 and May 2, 2008

Solutions to demonstration problems

Solution to Problem 4

Boolean statements can be represented using basic cases, thus

$$
\mathrm{a}==\mathrm{b} \equiv_{\operatorname{def}}!(\mathrm{a}>\mathrm{b}) \& \&!(\mathrm{b}>\mathrm{a})
$$

and

$$
\begin{array}{cll}
\mathrm{a}<\mathrm{b} & \equiv_{\operatorname{def}} \quad \mathrm{b}>\mathrm{a} \\
\mathrm{a}!=\mathrm{b} & \equiv_{\operatorname{def}} \quad!(\mathrm{a}==\mathrm{b})
\end{array}
$$

We choose $A=" \mathrm{a}>\mathrm{b} "$ and $B=" \mathrm{~b}>\mathrm{a}$ " as atomic propositions. This way the statement in item (a) is

$$
\neg((\neg A \wedge \neg B) \vee B)
$$

and respectivelly, in item (b):

$$
\neg(\neg A \wedge \neg B) \wedge \neg B
$$

Notice that the sesond proposition is obtained from the first by applying de Morgan's rule and thus the statements are logically equivalent.

Solution to Problem 5

(a) $\models_{p}[\mathrm{x}>0] \mathrm{y}=\mathrm{x}+1[\mathrm{y}>1]$

Starting from the postcondition and applying the rule for assignment backwards, we obtain $[x+1>1] y=x+1[y>1]$
$x>0$ is equivalent to $x+1>1$, and the claim holds.
(b) $\models_{p}[\operatorname{true}] \mathrm{y}=\mathrm{x} ; \mathrm{y}=\mathrm{x}+\mathrm{x}+\mathrm{y}[\mathrm{y}==3 * \mathrm{x}]$

Applying twise the assignment rule, we obtain:

$$
\begin{aligned}
& {[x+x+y==3 * x] y=x+x+y[y==3 * x]} \\
& {[x+x+x==3 * x] y=x[x+x+y==3 * x]}
\end{aligned}
$$

and furthermore using the rule for composition:

$$
[x+x+x==3 * x] y=x ; y=x+x+y[y==3 * x] .
$$

Statement $x+x+x=3 * x$ evaluates to true for all integers, and thus the claim holds.
(c) $\models_{p}[\mathrm{x}>1] \mathrm{a}=1 ; \mathrm{y}=\mathrm{x} ; \mathrm{y}=\mathrm{y}-\mathrm{a}[\mathrm{y}>0 \& \& \mathrm{x}>\mathrm{y}]$

$$
\begin{aligned}
& {[y-a>0 \& \& x>y-a] y=y-a[y>0 \& \& x>y]} \\
& {[x-a>0 \& \& x>x-a] y=x[y-a>0 \& \& x>y-a]} \\
& {[x-1>0 \& \& x>x-1] a=1[x-a>0 \& \& x>x-a] .}
\end{aligned}
$$

Now, the latter part of $x-1>0 \& \& x>x-1$ evaluates to true for all integers and $x-1>0$ is equivalent to $x>1$. Thus the claim holds.

Solution to Problem 6

$$
\begin{aligned}
& {[\operatorname{true} \& \&!(x>y)][!(x>y)][x<=y][x==\min (x, y)] z=x[z==\min (x, y)] \text { and }} \\
& {[\operatorname{true} \& \&(x>y)][(x>y)][y==\min (x, y)] z=y[z==\min (x, y)] .}
\end{aligned}
$$

Thus,

```
[true]
```

if $(x>y)$ then $\{$
$z=y$
\}else \{
$\mathrm{z}=\mathrm{x}$
$\}[z==\min (x, y)]$

Solution to Problem 7

First, we need and invariant for the loop. Inspecting the code, we note that the value of variable z increases while the value for variable v decreases. Moreover, the sum of z and v stays constant. This constant is obtained for the initila values of z and v, as thus we have invariant $I: \mathrm{z}+\mathrm{v}==\mathrm{x}+\mathrm{y}$.
We check that I really is an invariant:

$$
\begin{aligned}
& {[z+v-1==x+y] v=v-1[z+v==x+y]} \\
& {[z+v==x+y][z+1+v-1==x+y] z=z+1[z+v-1==x+y]}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& \text { [} \mathrm{z}+\mathrm{v}=\mathrm{x}+\mathrm{y} \text {] } \\
& \text { while(! (v ==0)) \{ } \\
& \mathrm{z}=\mathrm{z}+1 \text {; } \\
& \mathrm{v}=\mathrm{v}-1 \\
& \}[\mathrm{z}+\mathrm{v}==\mathrm{x}+\mathrm{y} \& \& \mathrm{v}==0]
\end{aligned}
$$

Finally, we need to find the preconditions for the assignments before the loop:

$$
\begin{aligned}
& {[z+y==x+y] v=y[z+v==x+y]} \\
& {[x+y==x+y] z=x[z+y==x+y]}
\end{aligned}
$$

Now $\mathrm{x}+\mathrm{y}=\mathrm{x}+\mathrm{y}$ evaluates to true for all integers.
(b) $\models_{t}[0<=\mathrm{y}] \operatorname{Sum}[\mathrm{z}==\mathrm{x}+\mathrm{y}]$

To prove total correctness, we need to make sure the program terminates.

$$
\begin{aligned}
& {[0<=y][x+y==x+y \& \& 0<=y] z=x[z+y==x+y \& \& 0<=y]} \\
& {[z+y==x+y \& \& 0<=y] v=y[z+v==x+y \& \& 0<=v]} \\
& \text { while(! (v ==0)) \{ } \\
& {[\mathrm{z}+\mathrm{v}==\mathrm{x}+\mathrm{y} \& \& 0<=\mathrm{v}-1 \& \& \mathrm{v}-1<\mathrm{n}] \mathrm{z}=\mathrm{z}+1 \text {; }} \\
& {[z+v-1==x+y \& \& 0<=v-1 \& \& v-1<n]} \\
& {[\mathrm{z}+\mathrm{v}-1==\mathrm{x}+\mathrm{y} \& \& 0<=\mathrm{v}-1 \& \& \mathrm{v}-1<\mathrm{n}] \mathrm{v}=\mathrm{v}-1} \\
& {[\mathrm{z}+\mathrm{v}=\mathrm{x}+\mathrm{y} \& \& 0<=\mathrm{v} \& \& \mathrm{v}<\mathrm{n}]} \\
& \}[\mathrm{z}+\mathrm{v}==\mathrm{x}+\mathrm{y} \& \& 0<=\mathrm{v} \& \& \mathrm{v}==0][\mathrm{z}=\mathrm{x}+\mathrm{y}]
\end{aligned}
$$

