Spring 2008

Tutorial problems

- **1.** Define predicate Y(x,y) (there is a connection from city x to city y) using the predicate L(x,y) (there is a flight from city x to city y).
- **2.** Show that the following sentences are not valid by constructing a structure in which the sentence is false, i.e., construct a counter-example.

a)
$$\forall x (P(x) \to R(x)) \land \forall x (Q(x) \to R(x)) \to \forall x (P(x) \to Q(x))$$

b)
$$\forall x \forall y (R(x,y) \rightarrow R(y,x)) \rightarrow \exists y \forall x R(x,y)$$

3. Transform the following sentences into clausal form.

a)
$$\neg(\exists x A(x) \lor \exists x B(x) \to \exists x (A(x) \lor B(x)))$$

b)
$$(\forall x P(x) \rightarrow \exists x \forall y Q(x, y)) \rightarrow \neg \forall y P(y))$$

Demonstration problems

4. Let R be a binary predicate with interpretation $R^S \subseteq U \times U$ (the set U is the domain of structure S). In the following table we give definitions for some properties of relation R^S .

Property	Definition
reflexivity	$\forall x R(x,x)$
irreflexivity	$\forall x \neg R(x,x)$
symmetry	$\forall x \forall y (R(x,y) \rightarrow R(y,x))$
asymmetry	$\forall x \forall y (R(x,y) \rightarrow \neg R(y,x))$
transitivity	$\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z))$
seriality	$\forall x \exists y R(x, y)$

Consider a domain U consisting of people. Give examples of relations R^S , $(\emptyset \subset R^S \subset U^2)$, that have properties described above.

5. Show that the following sentences are not valid by constructing a structure in which the sentence is false, i.e., construct a counter-example.

a)
$$\forall x \exists y P(x, y) \rightarrow \exists y \forall x P(x, y)$$

b)
$$\exists x (P(x) \lor Q(x)) \rightarrow \exists x P(x) \land \exists x Q(x)$$

c)
$$\neg \forall x (P(x) \rightarrow R(x)) \lor \neg \forall x (P(x) \rightarrow \neg R(x))$$

6. Transform the following sentences into conjunctive normal form and perform skolemization.

a)
$$\forall y (\exists x P(x,y) \rightarrow \forall z Q(y,z)) \land \exists y (\forall x R(x,y) \lor \forall x Q(x,y))$$

b)
$$\exists x \forall y R(x, y) \leftrightarrow \forall y \exists x P(x, y)$$

c)
$$\forall x \exists y Q(x, y) \lor (\exists x \forall y P(x, y) \land \neg \exists x \exists y P(x, y))$$

d)
$$\neg(\forall x \exists y P(x,y) \rightarrow \exists x \exists y R(x,y)) \land \forall x \neg \exists y Q(x,y)$$

7. Use the rules in Lemma 9.1 [NS, 1997, page 129] to obtain rules for the following cases.

a)
$$\forall x \phi(x) \rightarrow \psi$$

b)
$$\exists x \phi(x) \rightarrow \psi$$

c)
$$\phi \rightarrow \forall x \psi(x)$$

d)
$$\phi \rightarrow \exists x \psi(x)$$

8. Transform the following sentences into clausal form.

a)
$$\neg \exists x ((P(x) \rightarrow P(a)) \land (P(x) \rightarrow P(b)))$$

b)
$$\forall y \exists x P(x, y)$$

c)
$$\neg \forall y \exists x G(x, y)$$

d)
$$\exists x \forall y \exists z (P(x,z) \lor P(z,y) \to G(x,y))$$