Tutorial problems

1. Formalize the following statements in predicate logic:
a) If all birds fly, a penguin is not a bird.
b) The children of two siblings are cousins.
c) There is only one real Santa Claus.

Draw the syntax trees for the sentences.
2. Formalize the following statements in predicate logic:
"Penguins are black and white. Some old tv shows are black and white. Therefore, some penguins are old tv shows."

Give a structure that doesn't satisfy your formalization.
3. A graph is a set S of nodes and a set E of edges between the nodes $(E \subseteq$ $S \times S)$. Set of nodes $P \subseteq S$ is a vertex cover for the graph, if for all $\left\langle s, s^{\prime}\right\rangle \in E$ it holds $s \in P$ or $s^{\prime} \in P$. The problem of vertex covering is to find a vertex cover for a graph.
a) Formalize the vertex covering problem using predicate logic.
b) Give a model for your formalization.
c) Give a structure that doesn't satisfy your formalization.

Demonstration problems

4. Formalize the following sentences using predicate logic:
a) There is a faulty gate.
b) This algorithm is the fastest.
c) Each participant of this course has a workstation to use
d) Only one process can write in each file at a time

Draw the syntax trees for sentences a) and b).
5. Remove unnecessary parenthesis so that the meaning of statement does not change.
a) $(\forall y((\exists x(P(x) \wedge Q(x))) \rightarrow L(y)))$
b) $((\exists x(\exists y(P(x, y) \vee Q(y, x)))) \leftrightarrow(\forall x(\neg K(f(x)))))$
c) $(\forall x(\forall y(A \wedge B)))$
6. What ground (variable-free) terms can you compose from a constant c, a unary function symbol f and a binary function symbol g ?
7. Represent arbitrary trees with function symbols using at most three constant or function symbols.
8. Show that if $\forall x \phi(x)$ is a sentence and t is a ground term, then $\phi(t)$ is a sentence.
9. Consider a domain $\mathbb{N}^{2}=\{\langle x, y\rangle \mid x \in \mathbb{N}, y \in \mathbb{N}\}$. Choose interpretations for a constant c and a unary function symbol $f \in \mathcal{F}_{1}$ such that each element in the domain has an interpretation.
10. A graph is a set S of nodes and a set K of edges between the nodes ($K \subseteq$ $S \times S$). The nodes s and s^{\prime} of the graph are adjacent, if they are connected with an edge $\left(\left\langle s, s^{\prime}\right\rangle \in K\right)$. Let C be a set of colors. The problem of node coloring is to find a color in C for each node of the graph so that each node has a unique color and two adjacent nodes have different colors.
a) Formalize the node coloring problem using predicate logic.
b) Give a model for your formalization.
c) Give a structure that doesn't satisfy your formalization.

