
T-79.3001 Logic in computer science: foundations Spring 2007
Exercise 4 ([Nerode and Shore, 1997], Chapters 4 and 7)
February 13–15, 2007

Solutions to demonstration problems

4. Peirce arrow is defined as:

A ↓ B ⇔de f ¬A∧¬B.

Define semantic tableaux rules for it.

Solution. Based on the definition and the semantic tableaux rules for basic
connectives, we get the following rules for Peirce arrow:

T (A ↓ B)

F(A)

F(B)

F(A ↓ B)

T (A) T (B)

5. Use semantic tableux to show that the following propositions are valid.

a) A → (B → B),

b) (A → B)∧ (B →C) → (A →C),

c) (A → B)∧ (A →C) → (A → B∧C) ja

d) (A →C)∧ (B →C)∧ (A∨B) →C.

We will proceed by constructing semantic tableaux for the negations of the
propositions (E(φ)). If all branches close (that is, there are contradictions)
thenφ is valid. If a branch is closed before the tableau is ready, then it is not
necessary to continue working on that branch.

You should notice, that the semantic tableu is actually usedto find models
for ¬φ. If all branches are contradictionary, then¬φ doesn’t have a model
and its negation is valid.

Solution.

a) A → (B → B):

F(A → (B → B))

T (A)

F(B → B)

T (B)

F(B)
⊗

b) (A → B)∧ (B →C) → (A →C):
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@
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F((A → B)∧ (B →C) → (A →C))

T ((A → B)∧ (B →C))

F(A →C)

T (A → B)

T (B →C)

T (A)

F(C)

F(A) T (B)

F(B) T (C)

⊗

⊗ ⊗



c) (A → B)∧ (A →C) → (A → B∧C):
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⊗

⊗

F((A → B)∧ (A →C) → (A → B∧C))

T ((A → B)∧ (A →C))

F(A → B∧C)

T (A → B)

T (A →C)

T (A)

F(B∧C)

F(A) T (B)

F(B) F(C)

F(A) T (C)
⊗⊗

d) (A →C)∧ (B →C)∧ (A∨B) →C:
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F((A →C)∧ (B →C)∧ (A∨B)→C)

T ((A →C)∧ (B →C)∧ (A∨B))

F(C)

T ((A →C)∧ (B →C))

T (A∨B)

T (A →C)

T (B →C)

F(A) T (C)

F(B) T (C)

T (A) T (B)
⊗ ⊗

⊗

⊗

6. Use a semantic tableaux to check whether following claims hold. If not,
give a counterexample.

a) {B → A,C → B,(C → A) → D} |= D

b) {A →C,A∨B,¬D →¬B} |= C → D

c) |= (A → (B →C)) → ((A →C) → (A → B))

d) |= (¬B → (A →C)) → (A → (B∨C))

Solution. When we are checking whether a propositionP is a logical con-
sequence of a set of propositionsS we put all nodeT (α) to the semantic
tableaux for allα ∈ S. Next we addF(P) to the tableaux and use inference
rules to complete it. If all branches of the tableaux end in a contradiction,
we know thatP can’t be false if all propositions inS are true and soP is



a logical consequence. Otherwise, the claim doesn’t hold and we can con-
struct a counterexample from an uncontradictionary branch.

a) T (B → A)

T (C → B)

T ((C → A) → D)

F(D)

F(C → A)

T (C)

F(A)

F(C)
⊗

T (B)

F(B)
⊗

T (A)
⊗

T (D)
⊗

As all brances are contradictory,D is a logical consequence of the set.

b) T (A →C)

T (A∨B)

T (¬D →¬B)

F(C → D)

T (C)

F(D)

F(¬D)

T (D)
⊗

T (¬B)

F(B)

T (A)

F(A)
⊗

T (C)

T (B)
⊗

As there is an unclosed branch,C → D is not logical consequence of
the set. We can construct a counter example from the open branch:
A = {A,C}. Thus it holdsA |= A →C, A |= A∨B, A |= ¬D →¬B, ja
A 6|= C → D (check!).

c) |= φ denotes thatφ is valid. To prove this we construct a semantic
tableuax forF(φ).

F((A → (B →C)) → ((A →C) → (A → B)))

T (A → (B →C))

F((A →C) → (A → B))

T (A →C)

F(A → B)

T (A)

F(B)

F(A)
⊗

T (C)

F(A)
⊗

T (B →C)6

F(B) T (C)
Since there is an unclosed brach, the proposition is not valid. A counter
example can be constructed from an open branch, for example from
the rightmost open branch we get:A = {A,C}.

d) F((¬B → (A →C)) → (A → B∨C))

T (¬B → (A →C))

F(A → B∨C)

T (A)

F(B∨C)

F(B)

F(C)

F(¬B)

T (B)
⊗

T (A →C)

F(A)
⊗

T (C)
⊗

As all brances are contradictory, the proposition is valid.

7. Recall the specification for two traffic light posts positioned in the inter-
section of two one-way streets discussed earlier in tutorials. Use semantic
tableaux to prove that “the red lights can’t be on at the same”is a logi-
cal consequence of the set of propositions describing the behaviour of the
system.



Solution.

T (P1∨K1∨V1)

T (P1→¬K1∧¬V1)

T (K1→¬P1∧¬V1)

T (V1→¬P1∧¬K1)

T (P2∨K2∨V2)

T (P2→¬K2∧¬V2)

T (K2→¬P2∧¬V2)

T (V2→¬P2∧¬K2)

T (¬(V1∧V2))

T (P1→ (K2∨V2))

T (P2→ (K1∨V1))

F(¬(P1∧P2))

T (P1∧P2)

T (P1)

T (P2)

F(P1)
⊗

T (K2∨V2)

T (K2)

F(K2)
⊗

T (¬P2∧¬V2)

T (¬P2)

T (¬V2)

F(P2)
⊗

T (V2)

F(K2)

F(V2)
⊗

T (¬P2∧¬K2)

T (¬P2)

T (¬K2)

F(P2)
⊗

T (¬P2∧¬V2)

T (¬P2)

T (¬V2)

F(P2)
⊗

8. Use the proof system by Hilbert to prove the following.

a) ⊢ P → P

b) {P → Q,Q → R} ⊢ P → R

c) {P,Q → (P → R)} ⊢ Q → R

Solution.

a)

1. (P → ((P → P) → P)) [A1] α = P, β = P → P
2. ((P → ((P → P) → P)) →

((P → (P → P)) → (P → P))) [A2] α = γ = P, β = P → P
3. ((P → (P → P)) → (P → P)) [MP:1,2]
4. (P → (P → P)) [A1] α = P, β = P
5. (P → P) [MP:3,4]

b)

1. (Q → R) [P2]
2. ((Q → R) → (P → (Q → R))) [A1] α = Q → R, β = P
3. (P → (Q → R)) [MP:1,2]
4. ((P → (Q → R)) → ((P → Q) → (P → R))) [A2] α = P, β = Q, γ = R
5. ((P → Q) → (P → R)) [MP:3,4]
6. (P → Q) [P1]
7. (P → R) [MP:5,6]

c)

1. P [P1]
2. (Q → (P → R)) [P2]
3. (P → (Q → P)) [A1] α = P, β = Q
4. (Q → P) [MP:1,3]
5. ((Q → (P → R)) → ((Q → P) → (Q → R))) [A2] α = Q, β = P, γ = R
6. ((Q → P) → (Q → R)) [MP:2,5]
7. (Q → R) [MP:4,6]


