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Solutions to demonstration problems

4. Define the connectives in propositional logic

a) using the proposition that is always false(⊥) and implication(→).

Solution.

¬A ≡ A →⊥
A∨B = ¬A → B ≡ (A →⊥) → B
A∧B = ¬(¬A∨¬B) = ¬(A →¬B) = ¬(A → (B →⊥)) ≡
(A → (B →⊥)) →⊥
A ↔ B = (A → B)∧ (B → A) ≡
((A → B) → ((B → A) →⊥)) →⊥

b) using Sheffer stroke.

Solution. Sheffer stroke is defined asA | B = ¬(A∧B).

¬A ≡ A | A
A∧B = ¬(A | B) ≡ (A | B) | (A | B)
A∨B = ¬(¬A∧¬B) = (¬A | ¬B) ≡ (A | A) | (B | B)
A → B = ¬A∨B = ¬(A∧¬B) = (A | ¬B) ≡ (A | (B | B))
A ↔ B = A → B∧B → A = (A | (B | B))∧ (B | (A | A)) ≡
((A | (B | B)) | (B | (A | A))) | ((A | (B | B)) | (B | (A | A)))

5. List all possible binary connectives (16 in total) and give their definitions
using the basic connectives in propositional logic.

All possibilities are listed in the following table.

p0 t t f f
p1 t f t f
p0∨¬p0 t t t t
p0∨ p1 t t t f
p1 → p0 t t f t
p0 t t f f
p0 → p1 t f t t
p1 t f t f
p0 ↔ p1 t f f t
p0∧ p1 t f f f

p0 t t f f
p1 t f t f
p0|p1 f t t t
¬(p0 ↔ p1) f t t f
¬p1 f t f t
¬(p0 → p1) f t f f
¬p0 f f t t
¬(p1 → p0) f f t f
p0 ↓ p1 f f f t
p0∧¬p0 f f f f

6. LetA1 ⊆ P andA2 ⊆ P be truth assignments andφ∈ L a proposition. Show
that if A1∩At(φ) = A2∩At(φ), thenA1 |= φ ⇐⇒ A2 |= φ.

Solution. Proof by induction.

Basic case:Let φ be an atomic proposition, that is,At(φ) = {φ}. By the
definition of intersection eitherφ ∈ A1 andφ ∈ A2, which impliesA1 |= φ
andA2 |= φ, or φ 6∈ A1 andφ 6∈ A2, which impliesA1 6|= φ andA2 6|= φ. Thus
A1 |= φ ⇐⇒ A2 |= φ.

Induction hypothesis: The claim holds for allφ that have at mostn con-
nectives.

Induction step: Let φ a proposition that hasn +1 connectives. Let’s do a
case analysis for different connectives.

1. Let φ be of the form¬α. Now, by induction hypothesis, the claim
holds for propositionα. If A1 |= α andA2 |= α, thenA1 6|= ¬α and
A2 6|= ¬α. On the other hand, ifA1 6|= α andA2 6|= α, thenA1 |= ¬α
andA2 |= ¬α. Thus the claim holds , ifφ is of the form¬α.

2. Let φ be of the formα∧β. The claim holds for bothα andβ by the
induction hypothesis. There are four possible cases.

– If A1 |= α, A2 |= α, A1 |= β andA2 |= β, then it holdsA1 |= α∧β
andA2 |= α∧β.

– If A1 |= α, A2 |= α, A1 6|= β andA2 6|= β, then it holdsA1 6|= α∧β
andA2 6|= α∧β.

– If A1 6|= α, A2 6|= α, A1 |= β andA2 |= β, then it holdsA1 6|= α∧β
andA2 6|= α∧β.

– If A1 6|= α, A2 6|= α, A1 6|= β andA2 6|= β, then it holdsA1 6|= α∧β
andA2 6|= α∧β.

Thus, the claim holds ifφ is of the formα∧β.

3. Go similarly through the other connectives based on theirdefinitions.

7. Let A = /0 be a truth assingment. Find the truth value of

(¬B →¬A) → ((¬B → A) → B)

by using a) the truth table and b) the recursive definition of truth values.

a) Solution. We denote the proposition withφ and choose the truth val-
ues forA andB according toA .

A B ¬A ¬B ¬B →¬A ¬B → A (¬B → A) → B φ
F F T T T F T T



b) Solution.

∗ According to the definitionA 6∈ A iff A 6|= A. Similarly B 6∈ A iff
A 6|= B.

∗ Based on the definition of negationA 6|= A iff A |= ¬A andA 6|= B
iff A |= ¬B.

∗ SinceA |= ¬A, it holdsA |= ¬B →¬A.

∗ SinceA 6|= A andA |= ¬B, we haveA 6|= ¬B → A.

∗ BecauseA 6|= ¬B → A, it holdsA |= (¬B → A) → B.

∗ SinceA |= (¬B → A) → B, we haveA |= φ.

8. An engineer designed a specification for two traffic light posts positioned in
the intersection of two one-way streets:

(i) Both lights have a green, a yellow and a red light. Exactlyone of the
lights is lit on both posts all times.

(ii) Both green lights are not on at the same time.

(iii) If one lamp post has the red light on, then the other has either green or
yellow light on.

a) Formalize the above requirements as a set of propositional logic state-
ments.

b) Construct a truth table for the set of statements.

c) Give a model for the set of statements and a truth assignment such that
the set of statements is not satisfied.

d) Are the requirements complete enough for a real life situation?

Solution.

a) We will use atomic propositionsP1, K1 andV1 to denote respectively
that the lamp post 1 has red, yellow and green light on (the letters come
from the initial letters of the colors in Finnish). LetP2, K2 andV2 be
the corresponding propositions for lamp post 2. Now we’ll gothrough
each requirement and present the set of propositions that correspond
to the requirement.

(i) For lamp post 1 we need propositionP1∨K1∨V1 (at least one
lamp is alight) and propositionsP1→¬K1∧¬V 1, K1→¬P1∧
¬V1,V1→¬P1∧¬K1 (at most one lamp is alight). Also, corre-
sponding propositions are needed for lamp post 2.

(ii) The needed proposition is¬(V1∧V2).

(iii) We need propositionsP1→ (K2∨V2) andP2→ (K1∨V1).

b) Let’s construct a truth table for the above set of propositions. We’ll
use a shorthand notationαi for propositions(Pi∨Ki∨Vi)∧ (Pi →
¬Ki ∧¬Vi)∧ (Ki → ¬Pi∧¬Vi)∧ (Vi → ¬Pi ∧¬Ki) (which means
that the lamp posti has exactly one light on). The rows marked with
stars are models of the set of propositions.

P1 K1V1P2 K2V2 α1 α2 ¬(V1∧V2) P1→ (K2∨V2) P2→ (K1∨V1)

F F F F F F F F T T T
F F F F F T F T T T T
F F F F T F F T T T T
F F F F T T F F T T T
F F F T F F F T T T F
F F F T F T F F T T F
F F F T T F F F T T F
F F F T T T F F T T F
F F T F F F T F T T T
F F T F F T T T F T T
F F T F T F T T T T T ∗
F F T F T T T F F T T
F F T T F F T T T T T ∗
F F T T F T T F F T T
F F T T T F T F T T T
F F T T T T T F F T T
F T F F F F T F T T T
F T F F F T T T T T T ∗
F T F F T F T T T T T ∗
F T F F T T T F T T T
F T F T F F T T T T T ∗
F T F T F T T F T T T
F T F T T F T F T T T
F T F T T T T F T T T
F T T F F F F F T T T
F T T F F T F T F T T
F T T F T F F T T T T
F T T F T T F F F T T
F T T T F F F T T T T
F T T T F T F F F T T
F T T T T F F F T T T
F T T T T T F F F T T



P1 K1V1P2 K2V2 α1 α2 ¬(V1∧V2) P1→ (K2∨V2) P2→ (K1∨V1)

T F F F F F T F T F T
T F F F F T T T T T T ∗
T F F F T F T T T T T ∗
T F F F T T T F T T T
T F F T F F T T T F F
T F F T F T T F T T F
T F F T T F T F T T F
T F F T T T T F T T F
T F T F F F F F T F T
T F T F F T F T F T T
T F T F T F F T T T T
T F T F T T F F F T T
T F T T F F F T T F T
T F T T F T F F F T T
T F T T T F F F T T T
T F T T T T F F F T T
T T F F F F F F T F T
T T F F F T F T T T T
T T F F T F F T T T T
T T F F T T F F T T T
T T F T F F F T T F T
T T F T F T F F T T T
T T F T T F F F T T T
T T F T T T F F T T T
T T T F F F F F T F T
T T T F F T F T F T T
T T T F T F F T T T T
T T T F T T F F F T T
T T T T F F F T T F T
T T T T F T F F F T T
T T T T T F F F T T T
T T T T T T F F F T T

There are seven models (out of 26 = 64 valuations). The claim “both
red lights are not on at the same time” can be formalized as¬(P1∧
P2). Examining the models we can see that the proposition¬(P1∧P2)
is true in each of them (check it), so it is a logical consequence of the
set of propositions.

c) The claim “the yellow light is alight on both traffic lights” translates
into propositionK1∧K2. Let A1 be a truth assignment that maps

K1 andK2 to true and all other atomic propositions to false, that is,
A1 = {K1,K2}. Now,A1 |= (K1∧K2), sinceA1 |= K1 jaA1 |= K2).
In additionA1 |= α holds for all propositionsα in item (a) (check!).
ThusA1 is a model of the set of propositions, whereK1∧K2 is true.
LetA2 be a truth assignment that maps propositionsV1 andV2 to true
and all other atomic propositions to false, that is,A2 = {V1,V2}. Now
A2 6|= ¬(V1∧V2), and thus the set of propositions is not satisfied in
A2.

d) The requirements are not sufficient, because in real life red and yellow
lights may be on at the same time. It is possible to lighten thecondi-
tions of (i) to allow this (think how this may be done by yourself). A
worse problem is that the propositions don’t specify the working order
of the lights (e.g. that the yellow light should follow the green one).
It is quite difficult to model this kind of behaviour with propositional
logic.

9. Apply truth tables to see whether the following claims hold.

a) (A → B) → ((B →C) → (A →C)) is valid.

b) ¬((A → B) → ((¬A → B) → B)) is unsatisfiable.

c) A ↔ B and¬(A ↔¬B) are logically equivalent.

d) {(A∧B)∨ (C∧A),(A∧B)∨¬B} |= A∨ (C∧¬B).

Solution.

a) Components of(A → B) → ((B → C) → (A → C)) are: A,B,C,A →
B,A →C,B →C, (B →C) → (A →C) and itself (we denote it byφ).
Propositionφ is valid iff φ is true in all possible truth assignments.

A B C A → B A →C B →C (B →C) → (A →C) φ
T T T T T T T T
T T F T F F T T
T F T F T T T T
T F F F F T F T
F T T T T T T T
F T F T T F T T
F F T T T T T T
F F F T T T T T

The last column only containsT and thusφ is valid.

b) The proposition is unsatisfiable iff all the values in the column of the truth
table corresponding to it areF.



c)
A B A ↔ B ¬A ↔¬B

T T T T
T F F F
F T F F
F F T T

Since the columns forA ↔ B and¬A ↔¬B are identical, the proposi-
tions are logically equivalent.

d)
A B C (A∧B)∨ (C∧A) (A∧B)∨¬B A∨ (C∧¬B)

T T T T T T⋆

T T F T T T⋆

T F T T T T⋆

T F F F T T
F T T F F F
F T F F F F
F F T F T T
F F F F T F

The claim holds, becauseA∨ (C∧¬B) has the valueT in all the lines
in which (A∧B)∨ (C∧A) and(A∧B)∨¬B get the valueT (marked
with ⋆).


