Tutorial problems

1. (a) Write down a program P such that $\models_{p}[\mathrm{true}] P[\mathrm{y}==\mathrm{x}+2]$ holds and prove that this is so.
(b) Write down a program P such that P contains an if-statement and

$$
\models_{p}[\text { true }] P[\mathrm{z}>\mathrm{x}+\mathrm{y}+4]
$$

holds, and prove that this is so.
2. Show that the following holds for program Prog:

$$
\models_{p}[\text { true }] \operatorname{Prog}[\mathrm{x}==\mathrm{v}-\mathrm{z}],
$$

where Prog is as follows:

```
x=0;
y=0;
while(!(y == z)) {
    y = y +1;
    x=x-1
}
x=x+v;
```

3. (a) For any B_{1}, B_{2} and P explain why $\models_{p}\left[B_{1}\right] P\left[B_{2}\right]$, whenever the relation $\models_{t}\left[B_{1}\right] P\left[B_{2}\right]$ holds.
(b) Show that the following holds for program Prog in Exercise 2:

$$
\models_{t}[\mathrm{z}>=0] \operatorname{Prog}[\mathrm{x}==\mathrm{v}-\mathrm{z}] .
$$

Demonstration problems

4. Use propositional logic to prove the equivalence of the following statements.
(a) ! $(a==b| | a<b)$
(b) $\mathrm{a}!=\mathrm{b} \& \&!(\mathrm{b}>\mathrm{a})$
5. Prove the partial correctness in the following cases.
(a) $\models_{p}[\mathrm{x}>0] \mathrm{y}=\mathrm{x}+1[\mathrm{y}>1]$
(b) $\models_{p}[$ true $] \mathrm{y}=\mathrm{x} ; \mathrm{y}=\mathrm{x}+\mathrm{x}+\mathrm{y}[\mathrm{y}==3 * \mathrm{x}]$
(c) $\models_{p}[\mathrm{x}>1] \mathrm{a}=1 ; \mathrm{y}=\mathrm{x} ; \mathrm{y}=\mathrm{y}-\mathrm{a}[\mathrm{y}>0 \& \& \mathrm{x}>\mathrm{y}]$
6. Show that \models_{p} [true] $\mathrm{P}[\mathrm{z}==\min (\mathrm{x}, \mathrm{y})]$, where P is the following program:
```
if(x>y) then{
    z=y
}else{
    z=x
}
```

7. Show that
(a) $\models_{p}[$ true $] \operatorname{Sum}[\mathrm{z}==\mathrm{x}+\mathrm{y}]$
(b) $\models_{t}[0<=y] \operatorname{Sum}[z==x+y]$
where Sum is the following program:
```
z = x;
v=y;
while(!(v == 0)) {
    z = z + 1 ;
    v}=\textrm{v}-
}
```

