CFTP with Read-Once Randomness

Emilia Oikarinen
Laboratory for Theoretical Computer Science
Helsinki University of Technology

10th November 2003

Motivation

- CFTP introduced earlier has drawbacks - old random numbers have to be re-used.
- Requires storage for the random numbers - memory costs.
- Recall the problems with using new random numbers on each restart or running the Markov chains into-the-future until coalescence.

This talk is based on:

- D. Wilson, How to Couple from the Past Using a Read-Once Source of Randomness. Random Structures and Algorithms 16, pp. 85-113, 2000.
- O. Häggström, Finite Markov Chains and Algorithmic Applications, Section 12. Cambridge University Press, 2002.

Contents

- A Variation of the CFTP Algorithm
- CFTP with Read-Once Randomness
- Computational Aspects
- Conclusions

A Variation of the CFTP Algorithm

Idea of read-once randomness: Use coupling into-the-future, but don't stop when coalescence is reached. Instead continue for an extra random amount of time.

We consider first some modifications of the from-the-past algorithm:

- Recall that instead of $\left(N_{1}, N_{2}, \ldots\right)=(1,2,4,8, \ldots)$ we can use any strictly increasing sequence of positive numbers.
- Let $N_{1}<N_{2}<\cdots$ be a random strictly increasing sequence of positive integers independent of $U_{0}, U_{-1}, U_{-2} \ldots$ used in the CFTP algorithm.
- Thus CFTP with starting times $-N_{1},-N_{2}, \ldots$ produces unbiased sample from the target distribution.
- Note, that there is no harm to run the chains from a few more earlier starting times $-N_{i}$ after coalescence at time 0 .
- Let

$$
\begin{aligned}
& N_{1}=N_{1}^{*} \\
& N_{2}=N_{1}^{*}+N_{2}^{*} \\
& N_{3}=N_{1}^{*}+N_{2}^{*}+N_{3}^{*}
\end{aligned}
$$

where $\left(N_{1}^{*}, N_{2}^{*}, \ldots\right)$ is an i.i.d. sequence of positive random integer-valued variables.

- Let distribution of N_{i}^{*} 's to be the same as needed to get coalescence in the coupling into-the-future algorithm.

Probability of Coalescence

- Claim: The probability the the CFTP algorithm starting from time $-N_{1}=-N_{1}^{*}$ results in coalescence by time 0 is at least $\frac{1}{2}$.
- Proof: Let M_{1} be the number of steps needed to get coalescence in CFTP algorithm starting at time $-N_{1}$ (running past time 0 if needed).
M_{1} and N_{1}^{*} have the same distribution and are independent. Thus (by symmetry) $\operatorname{Pr}\left[M_{1} \leq N_{1}^{*}\right]=\operatorname{Pr}\left[M_{1} \geq N_{1}^{*}\right]$.

Furthermore, $\operatorname{Pr}\left[M_{1} \leq N_{1}^{*}\right]+\operatorname{Pr}\left[M_{1} \geq N_{1}^{*}\right]$

$$
\begin{aligned}
& =1-\operatorname{Pr}\left[M_{1}>N_{1}^{*}\right]+1-\operatorname{Pr}\left[M_{1}<N_{1}^{*}\right] \\
& =2-\left(\operatorname{Pr}\left[M_{1}>N_{1}^{*}\right]+\mathbf{P r}\left[M_{1}<N_{1}^{*}\right]\right) \\
& =2-\operatorname{Pr}\left[M_{1} \neq N_{1}^{*}\right] \\
& \geq 2-1=1 .
\end{aligned}
$$

Thus $\operatorname{Pr}\left[M_{1} \leq N_{1}^{*}\right] \geq \frac{1}{2}$ and the claim holds.

- More generally, the probability the the CFTP algorithm starting from time $-N_{j}=-\left(N_{1}^{*}+N_{2}^{*}+\cdots+N_{j}^{*}\right)$ results in coalescence by time $-N_{j-1}$ is at least $\frac{1}{2}$.

A Successful Restart

- We say that j th restart is successful if it results in coalescence no later than time $-N_{j-1}$.
- Thus each restart has probability of at least $\frac{1}{2}$ of being successful.
- The probability of successful restart is not equal to $\frac{1}{2}$ only if there is a tie $M_{j}=N_{j}^{*}$, where M_{j} is the amount of time needed to get coalescence starting from time $-N_{j}$ in the CFTP algorithm.
- To simplify things, we prefer to work with a probability of exactly $\frac{1}{2}$.

A *-Successful Restart

- We say that j th restart is $*$-successful if either $M_{j}<N_{j}^{*}$ or $M_{j}=N_{j}^{*}$ and a fair coin toss comes up heads.
- Clearly, each restart has probability $\frac{1}{2}$ of being $*$-successful.
- Now, we have a strange but correct (unbiased) variant of the CFTP algorithm that generates starting times $-N_{1},-N_{2}, \ldots$ and continues until a restart is $*$-successful.
- But no read-once randomness yet ...

CFTP with Read-Once Randomness

- We need to understand the distribution of the number of *-failing (opposite to $*$-successful) restarts before getting a *-successful restart in our algorithm.
- Geometric distribution: If we have a coin with heads-probability p which we toss repeatedly and independently until it comes up heads, then the number of tails Y is geometrically distributed with parameter p; $\operatorname{Pr}[Y=n]=p(1-p)^{n}$.
- The number of $*$-failing restarts Y is clearly geometrically distributed with parameter $\frac{1}{2}$. Thus the final (i.e. $*$-successful) restart takes place at time $-N_{Y+1}$.

CFTP with Read-Once Randomness Cont'd

- Thus we first run the chains from time $-N_{Y+1}$ to time $-N_{Y}$, then from $-N_{Y}$ to time $-N_{Y-1}$ and so on until time 0 .
- No prior attempts with starting times that fail to give coalescence at time 0 are needed!
- How can this be achieved?

A Twin Run

- Run two independent copies of the coupling into-the-future algorithm until they both coalescence.
- The copy that coalescences first is the winner and the other is the loser, and a fair coin toss is used as a tie-breaker if they coalescence simultaneously.
- We call this a twin run.

The crucial observation is, that the evolution of the Markov chain from time $-N_{Y+1}$ to time $-N_{Y}$ has exactly the same distribution as the evolution of the winner of a twin run.

How to proceed from time $-N_{Y}$ to time 0 ?

- We get from time $-N_{Y+1}$ to time $-N_{Y}$ using the twin run.
- Then simulate a geometric random variable Y with parameter $p=\frac{1}{2}$ to determine the number of $*$-failing restarts.
- If $Y=0$, we have coalescence at time $-N_{Y}=0$ and we're done.
- Otherwise, $Y \geq 1$. The value $X\left(-N_{Y}\right)$ has been established using the first twin run.
- To simulate the evolution from time $-N_{Y}$ to time $-N_{Y-1}$ we use another twin run.
- We let the chain evolve as in the loser of the twin run, where the loser runs from time 0 until the time winner gets coalescence.
- This gives precisely the right distribution of the evolution

$$
\left(X\left(-N_{Y}\right), X\left(-N_{Y}+1\right), \ldots, X\left(-N_{Y-1}\right)\right)
$$

- Then simulate the chain from time N_{Y-1} to N_{Y-2} in the same way using another twin run and so on until time 0 .
- The value of the chain at time 0 has exactly the same distribution as the variant of CFTP algorithm described earlier.

Thus we have a unbiased sample from the stationary distribution without storing or rereading any of the random numbers.

Computational Aspects

- Expected running time is of the same order of magnitude as in the original CFTP algorithm.
- There are applications in which the read-once CFTP is up to logarithmically faster.

Conclusions

- Exact sampling without need to re-use/store any random numbers.
- Expected running time is of the same order of magnitude as in the original CFTP algorithm.

