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Motivation

• CFTP introduced earlier has drawbacks — old random numbers
have to be re-used.

• Requires storage for the random numbers — memory costs.

• Recall the problems with using new random numbers on each
restart or running the Markov chains into-the-future until
coalescence.
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This talk is based on:

• D. Wilson, How to Couple from the Past Using a Read-Once
Source of Randomness. Random Structures and Algorithms 16,
pp. 85-113, 2000.

• O. Häggström, Finite Markov Chains and Algorithmic
Applications, Section 12. Cambridge University Press, 2002.
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A Variation of the CFTP Algorithm

Idea of read-once randomness: Use coupling into-the-future, but
don’t stop when coalescence is reached. Instead continue for an extra
random amount of time.

We consider first some modifications of the from-the-past algorithm:

• Recall that instead of (N1, N2, . . .) = (1, 2, 4, 8, . . .) we can use
any strictly increasing sequence of positive numbers.

• Let N1 < N2 < · · · be a random strictly increasing sequence of
positive integers independent of U0, U−1, U−2 . . . used in the
CFTP algorithm.

• Thus CFTP with starting times −N1,−N2, . . . produces unbiased
sample from the target distribution.
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• Note, that there is no harm to run the chains from a few more
earlier starting times −Ni after coalescence at time 0.

• Let
N1 = N∗

1

N2 = N∗
1 + N∗

2

N3 = N∗
1 + N∗

2 + N∗
3

...
...

where (N∗
1 , N∗

2 , . . .) is an i.i.d. sequence of positive random
integer-valued variables.

• Let distribution of N∗
i ’s to be the same as needed to get

coalescence in the coupling into-the-future algorithm.
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Probability of Coalescence

• Claim: The probability the the CFTP algorithm starting from
time −N1 = −N∗

1 results in coalescence by time 0 is at least 1
2 .

• Proof: Let M1 be the number of steps needed to get coalescence
in CFTP algorithm starting at time −N1 (running past time 0 if
needed).

M1 and N∗
1 have the same distribution and are independent.

Thus (by symmetry) Pr[M1 ≤ N∗
1 ] = Pr[M1 ≥ N∗

1 ].
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Furthermore, Pr[M1 ≤ N∗
1 ] + Pr[M1 ≥ N∗

1 ]

= 1−Pr[M1 > N∗
1 ] + 1−Pr[M1 < N∗

1 ]

= 2− (Pr[M1 > N∗
1 ] + Pr[M1 < N∗

1 ])

= 2−Pr[M1 6= N∗
1 ]

≥ 2− 1 = 1.

Thus Pr[M1 ≤ N∗
1 ] ≥ 1

2 and the claim holds.

• More generally, the probability the the CFTP algorithm starting
from time −Nj = −(N∗

1 + N∗
2 + · · ·+ N∗

j ) results in coalescence
by time −Nj−1 is at least 1

2 .

8



T-79.300 Postgraduate Course in Theoretical Computer Science: CFTP with Read-Once Randomness

A Successful Restart

• We say that jth restart is successful if it results in coalescence no
later than time −Nj−1.

• Thus each restart has probability of at least 1
2 of being successful.

• The probability of successful restart is not equal to 1
2 only if there

is a tie Mj = N∗
j , where Mj is the amount of time needed to get

coalescence starting from time −Nj in the CFTP algorithm.

• To simplify things, we prefer to work with a probability of
exactly 1

2 .
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A ∗-Successful Restart

• We say that jth restart is ∗-successful if either Mj < N∗
j or

Mj = N∗
j and a fair coin toss comes up heads.

• Clearly, each restart has probability 1
2 of being ∗-successful.

• Now, we have a strange but correct (unbiased) variant of the
CFTP algorithm that generates starting times −N1,−N2, . . . and
continues until a restart is ∗-successful.

• But no read-once randomness yet . . .
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CFTP with Read-Once Randomness

• We need to understand the distribution of the number of
∗-failing (opposite to ∗-successful) restarts before getting a
∗-successful restart in our algorithm.

• Geometric distribution: If we have a coin with
heads-probability p which we toss repeatedly and independently
until it comes up heads, then the number of tails Y is
geometrically distributed with parameter p;
Pr[Y = n] = p(1− p)n.

• The number of ∗-failing restarts Y is clearly geometrically
distributed with parameter 1

2 . Thus the final (i.e. ∗-successful)
restart takes place at time −NY +1.
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CFTP with Read-Once Randomness Cont’d

• Thus we first run the chains from time −NY +1 to time −NY ,
then from −NY to time −NY−1 and so on until time 0.

• No prior attempts with starting times that fail to give
coalescence at time 0 are needed!

• How can this be achieved?
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A Twin Run

• Run two independent copies of the coupling into-the-future
algorithm until they both coalescence.

• The copy that coalescences first is the winner and the other is
the loser, and a fair coin toss is used as a tie-breaker if they
coalescence simultaneously.

• We call this a twin run.

The crucial observation is, that the evolution of the Markov chain
from time −NY +1 to time −NY has exactly the same distribution as
the evolution of the winner of a twin run.
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How to proceed from time −NY to time 0?

• We get from time −NY +1 to time −NY using the twin run.

• Then simulate a geometric random variable Y with parameter
p = 1

2 to determine the number of ∗-failing restarts.

• If Y = 0, we have coalescence at time −NY = 0 and we’re done.

• Otherwise, Y ≥ 1. The value X(−NY ) has been established
using the first twin run.

• To simulate the evolution from time −NY to time −NY−1 we use
another twin run.

14



T-79.300 Postgraduate Course in Theoretical Computer Science: CFTP with Read-Once Randomness

• We let the chain evolve as in the loser of the twin run, where the
loser runs from time 0 until the time winner gets coalescence.

• This gives precisely the right distribution of the evolution
(X(−NY ), X(−NY + 1), . . . , X(−NY−1)).

• Then simulate the chain from time NY−1 to NY−2 in the same
way using another twin run and so on until time 0.

• The value of the chain at time 0 has exactly the same
distribution as the variant of CFTP algorithm described earlier.

Thus we have a unbiased sample from the stationary
distribution without storing or rereading any of the random
numbers.
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Computational Aspects

• Expected running time is of the same order of magnitude as in
the original CFTP algorithm.

• There are applications in which the read-once CFTP is up to
logarithmically faster.
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Conclusions

• Exact sampling without need to re-use/store any random
numbers.

• Expected running time is of the same order of magnitude as in
the original CFTP algorithm.
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