1

Directed Diffusion for Wireless Sensor Networking

Jussi Nikander

Jussi.Nikander@hut.fi

9th February 2005

Contents

- Directed Diffusion method
- Evaluation
 - Mathematical analysis
 - Simulations
- Conclusion

Directed Diffusion

- Protocol for *distributed microsensing*, an activity where several cheap, low–powered nodes coordinate to achieve a sensing task
- Designed for robustness, scaling and *energy efficiency*
- Requires only localised interaction between nodes
- Data-centric approach: communication based named data, not named nodes
- four main features: Interests, Gradients, Data and Reinforcement

Interests and Data Naming

- Interest is a named task description.
 - Defines the data (sensor events) the originator is interested in
 - Inserted to the network at some (possibly arbitrary) node called a *sink*
 - Interests are diffused through the network to all (relevant) nodes
- Naming distinguishes between different tasks
 - Name can, for example, be a number of name–value pairs
- *Exploratory* interests used to find out if there are any interesting phenomena

Interest Propagation and Storage

- Each node maintains a cache of active *interests*
- an *interest* is a soft state, the *sink* must periodically refresh it
- Each node only knows the previous hop from which it received the interest, not the sink
- Each interest has one or more *gradients* associated with it
- Upon receiving an interest message, a node updates it cache, and may resend the message to (some subset of) its neighbour nodes.

Gradients

- Each *interest* entry has at least one *gradient* that tells where to forward *data* associated with the *interest*.
- An *interest* may have several *gradients* associated with it
- A gradient contains
 - the node where to forward data (the *previous hop* where the *interest* was received from)
 - Data rate, which tells how often data events should be forwarded
 - duration, which tells how long data should be forwarded

Data Propagation and Path Reinforcement

- Nodes sensing events queried by an *interest* send *data* messages to the network
- Data is forwarded according to the gradients associated with the interest
- Intermediate nodes may aggregate data in some cases
- When a *sink* starts to received data it can *reinforce* one or more neighbours
 - *Reinforcement* is done to draw in more data
 - Done by sending new interests with larger data rates
 - *Reinforcements* create paths through which data flows at high speed
 - Also possible to negatively reinforce unwanted paths

Evaluation

- In evaluated situations several source nodes send data messages to several *sinks*.
- Directed Diffusion compared to two idealised schemes
 - *Flooding*, where each data message is sent to every node in the network. Watermark comparison: useful scheme should be at least as good.
 - *Omniscient Multicast*, where each message is sent to the sinks using shortest path multicast trees. Represent best case for IP–networks.

Mathematical Analysis

- Schemes evaluated in a grid–shaped idealised network with *N* nodes.
- Results, when *n* is the number of sources, each of which sent one data message and *m* number of sinks:
- Total delivery costs are compared
 - Flooding O(nN)
 - Omniscient Multicast $O(n\sqrt{N})$, when $m \ll \sqrt{N}$
 - Directed Diffusion $O(n\sqrt{N})$, when $m \ll \sqrt{N}$
- Directed Diffusion more efficient than Omniscient Multicast despite similar results

Simulation Environment

- Five sizes of networks, between 50 and 250 nodes
- Average node density constant in all simulations
- Five source and five *sink* nodes
- Low idle-time power dissipation
- Metrics used
 - Average dissipated energy
 - Average delay
 - Distinct–event delivery ratio

Simulated cases

- Comparative evaluation of different schemes
- Impact of temporary node losses on Directed Diffusion
- Impact of Data aggregation and Negative Reinforcement
- Impact of high idle time power consumption

Simulation results

- Directed Diffusion has lowest average dissipated energy
- Can handle node failures
- Data aggregation and negative reinforcement enhance performance considerably
- Differences in power consumption disappear if idle-time power consumption is high

Conclusion

- Implementation for several platforms mentioned
- The question of node mobility?
- Questions?