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Problem setup and other generalities 
 
We consider two popular methods for peer-to-peer communications: RF and optical 
media. Only planar networks will be considered, but extending the developed localization 
techniques to 3D is straightforward. 
 
In a network of thousands of nodes, it is unlikely that the designer will determine the 
position of each node. To process sensor data, however, it is necessary to know where the 
data come from. 
 
GPS is currently a costly solution. 
 
Instead, we can estimate node positions relying only on connection-imposed proximity 
constraints. In this model, only a few nodes (anchors) have known positions (perhaps 
equipped with GPS or placed deliberately) and positions of the remaining nodes are 
computed from knowledge about communication links. 
  
A physical example: an RF system that can transmit up to 20m. 
 
Proximity constraints restrict the feasible set of unknown node positions. A realistic 
assumption is that there is some degree of error in the distance information. 



 
In a given network of n nodes, we assume that positions of the first m nodes are known 
(x1, y1, ... xm, ym) and the remaining (n-m) positions are unknown. The feasibility problem 
is then to find (xm+1, ym+1, ... xn, yn) such that the proximity constraints are satisfied. 
 
 
The position estimation methodology developed in [1] and [2] requires centralized 
computation. Namely, all nodes must communicate their connectivity information to a 
single computer to solve the optimization problem. 
 
 
We focus on the position estimation aspect and no further consideration is given to 
communication protocols though bandwidth constraints may be a fundamental limitation. 



 
In [1], we search for feasible solutions to the position estimation problem using convex 
optimization, LP and SDP (in particular, SOCP). 
 
We consider and simulate models isotropic and directional communication, though the 
methods presented are not limited to these simple cases. 
 
Additionally, a method for placing rectangular bounds around the possible positions for 
all unknown nodes in the network is given.  
 
 
In [2], we set up the optimization problem to minimize the error in node positions to fit 
distance measures, and convex programming techniques are used to solve it. We convert 
non-convex quadratic distance constraints (not used in [1]) into linear constraints. That 
results in estimation errors being minimal even when the anchor nodes are not suitably 
placed within the network or the distance measurements are noisy. 
 
Also observable gauges are developed to measure the quality of the distance data or to 
detect erroneous sensors. 
 



 
Machinery: LP and SDP 
 
LP solves problems of the form: 
 
Minimize     cTx 
Subject to:   Ax ≤ b 
 
Geometrically, we are minimizing a linear function over a polyhedron. 
 
 
A generalization of the LP is the semidefinite program (SDP) of the form: 
 
Minimize     cTx 
Subject to:   F(x) = F0 + x1F1 + … + xnFn ≤ 0, Fi = Fi

T 
                     Ax ≤ b 
 
 
Efficient polynomial-time algorithms based on interior point methods exist for solving 
linear programs and semidefinite programs. In general, efficient computational methods 
are available for most convex programming problems. (Note that feasible solutions of LP 
and SDP form convex sets.) 
 



 
Constraints can be stacked in the both methods. SDP is sufficient to solve all numerical 
problems that we encounter below, though LP is used whenever possible because of its 
superior computational efficiency. 
 
For position estimation, we form a single vector with all the positions: 
x = [x1 y1 ... xm ym... xm+1 ym+1 ... xn yn]T 
The first m entries are fixed as data and the remaining (n-m) are computed by the 
algorithm. 
 
 
The solution methods are not approximate: providing that we believe in the validity of 
the constraint model, position estimation obtained is the best that can be accomplished. 
 
 
It is sufficient to consider connection constraints individually as both programming 
methods allow for constraints to be collected into a single problem. 
 



 
Modeling feasible sets: turning connection constraints into those admissible in LP 
and SDP 
 
Radial constraints – RF communication 
 
The RF transmitter of a wireless sensor node can be modeled as having a rotationally 
symmetric range. While this is not an accurate physical representation of what is often a 
highly anisotropic and time-varying communication range, a circle that bounds the 
maximal range can always be used. The developed methods apply also to ellipses. 
  
A connection between nodes can be represented by a 2-norm constraint on the node 
positions: for a maximum range R and node positions a and b, we have || a – b ||2 ≤ R. 
This condition is equivalent to:  
 

 
 
and this can be presented in the SDP constraint form given above. 
 
 
We can stack the radial constraints in diagonal blocks to form one large SDP for the 
entire network. 



 
If we know the exact distance rab between a and b (or, a tighter (a, b)-specific upper 
bound), we will use it instead of the global upper bound R. Physically, an estimate of rab 
can be obtained during an initialization phase by transmitters varying their output power. 
 
  
We note that the following constraints are not convex (and ignored in [1] altogether): 
 
|| a – b ||2 = rab,    || a – b ||2 > R. 
 
The former one would be very helpful if formulated as a set of robust convex constraints. 
It is easy to argue that constraints of the latter type are not physically realistic: nodes 
within a certain range may not be able to communicate due to a physical barrier or 
transmission anisotropy. (However, those are used in [2] in their generic constraint 
model.) 
 
 
What do we miss ignoring the above non-convex constraints? We do not have a 
mechanism in the radial constraint model for bounding nodes away from known 
positions. Unknown positions will always be found in the convex hull of the known 
positions. Hence, we have to be deeply concerned about placing our anchors, with the 
best results obtained when they are “uniformly distributed” on the convex hull boundary 
of the network. Such a limitation may be very uncomfortable in certain cases. 
 



 
Angular constraints – optical communication 
 
Here we consider sensor nodes with laser transmitters and receivers that scan through 
some angle. The receiver rotates its detector coarsely until a signal is obtained, and then 
fine-tunes to get the maximum signal strength. By observing the best reception angle, we 
get an estimate of the relative angle and a rough estimate of the maximum distance to the 
transmitter. This results in a cone (triangle in 2D) for the feasible set. Such a cone can be 
expressed as the intersection of three half-spaces – two to bound the angle and one to 
place a distance limit. The intersection of half-spaces can be expressed as an LP 
constraint. 
 
 
We note that any combination of the SDP and LP constraints can be used to define 
individual feasible position sets. A practical model of a heterogeneous system might 
incorporate both radial and angular constraints in the same network. 
 



 
Modeling uncertainty in anchor positions 
 
Although we seemingly assume in our models that the anchor node locations are known 
precisely, it is simple to introduce some uncertainty by adding new convex constraints. 
 
For example, suppose that node A is positioned at the origin, uncertain to within a unit 
distance. By adding a virtual node positioned at the origin, node V, and adding a radial 
constraint rAV = 1, the uncertainty will be accounted for by the global problem solution. 
 
This also allows for a sensitivity study on the anchor positions. By varying the 
uncertainty on the known node positions and measuring the corresponding variation in 
the network error (a measure of discrepancy between actual and estimated node 
positions), we can infer the importance of precise anchor positioning. 
 



 
LP/SDP objective function issue for our models. Bounding feasible sets. 
 
While we can express nodes proximity constraints in the form admissible by LP and 
SDP, there is no natural linear objective (cTx) that would provide any sort of “optimal” 
solution to the localization problem. 
 
One option is to leave the objective function blank in the solver. This has the effect of 
selecting some feasible point xest = (xest, yest) from the solution space – this point 
represents a set of (n-m) pairs (x, y), one for each unknown position. The most precise 
statement of a node’s position that can be made is that the node lies somewhere in the 
feasible region. 
 
 
We define performance of the algorithm as the mean error in the computed node 
positions: 
 

 
 



 
Taking the objective function into use and running the algorithm multiple times lets us 
bound the feasible sets with rectangles parallel to the axes. Setting vector c as (0, …, 0, 
±1, 0, …, 0) we will obtain minimum and maximum feasible values of x and y 
coordinates of unknown nodes. 
 
Selecting centers of the bounding rectangles as the most likely solution, we can expect an 
improvement in the mean error. (We can, at least, show that the center of a bounding 
rectangle always belongs to the corresponding feasible set.) 
 
Thus, for the (quite high) price of a 4(n-m)-fold increase in the number of problems 
solved, an improvement in estimation performance and an outer bound on the solution 
are obtained. 
 



 
Simulation results 
 
Computation time 
 
Applying LP and SOCP solvers to very simple networks with two anchor nodes shows 
that the SOCP scales better than O(k3) and the LP scales better than O(k2), where k is the 
number of connections. 
 
More generally, we show that rapid solution of the localization problem for networks 
with several hundred nodes is possible, and that the technique is directly extensible to 
networks of thousands of nodes. 
 
Network simulation 
 
Networks used in the simulations were formed by placing 200 nodes randomly and 
uniformly in a square region with the side length 10R. The connectivity is determined by 
examining pairwise distances; if the distance between two nodes is less than R, the nodes 
are labeled as connected. Then the largest connected subnetwork of the 200 nodes 
network is extracted and the node labels are randomly permuted. Ten such networks were 
used for simulation; the average number of nodes was 194 and the average node 
connectivity was 5.7. 



Comparison between two radial constraint models, comparison with beacon systems 
 
The performance difference between the fixed radius and variable radius RF location 
methods was measured by performing the following test: 
 
1) Select node 1 as an anchor (m = 1) 
2) Solve for the remaining n-m unknown positions 
3) Compute the mean error for these n-m positions from the actual network 
4) Increase the number of known positions by 1 (hence decreasing the unknowns by 1, m 
= m + 1) 
5) Repeat steps 2-4 until m = 100 
 
Here are the results of those trials: 

 



 
We also compare these results with a naïve beacon system, where the environment is 
covered by a grid of anchors. If a node is within the communication range of a beacon, a 
random guess within this radius of R results in the mean error of 2/3 R for the network. 
For our 10R x 10R network, this performance would require around 50 beacon nodes; 
this accuracy is achieved with 26 nodes in the variable radius case and 33 for fixed radii 
with randomly chosen known positions. 
 
Significant performance increase with the variable radius method suggests that efforts to 
enhance distance sensing (either by measuring power directly or by modulating the 
transmission power through a few discrete steps) will improve position estimation. 
 
 
Selection of anchor nodes 
 
Averaged over the 10 test networks, selecting four nodes closest to the corners as anchors 
reduces the mean error in the variable radius case from 2.4R to 1.2R (compared with 
random selection of four anchor nodes). Selecting additional nodes closest to the middle 
of the external edges for a total of 8 known positions reduces the mean error from 1.7R to 
0.72R. With 8 known positions placed at the network perimeter, the 40+ beacon network 
performance is matched. 
 
Additionally, selection of the bounding rectangle centers for the unknown positions does 
improve the estimation accuracy: the mean error drops from 0.72R to 0.64R. 



 
Angular constraint model results 
 
Two parameters were varied in the experiments: the half-angle of uncertainty θ and the 
distance to the outer bound of the cone. 
 
In the first experiment, θ is reduced from π/4 to π/10 and to π/100. Again, the number of 
known positions is increased from 1 to 100 and the mean error is computed over the 10 
test networks. As anticipated, the smaller individual constraints lead to better position 
estimates: 
 

 
 



To determine sensitivity of the results to the uncertainty in the cone length, the outer 
bound was varied in the second experiment. The connectivity of the network is 
determined using the same distance as previously; the nodes have no more connections 
than before, but the positional uncertainty of neighboring nodes was varied. A half-angle 
of π/100 is used in all the trials. 
 

 
 
 
 
Finally, we note that the results for the angular and radial methods should not be 
compared directly as different numerical solvers with different initializations and random 
objective functions were used. 
 



 
Dependence on node density and connectivity 
 
The experiments show that increasing graph connectivity improves performance 
dramatically, but would require significant increase in communication in the network to 
transmit all the required connectivity information to the central computer. Obtaining the 
connectivity information will require a number of messages linear in the average network 
connectivity and the solution of the problem will scale polynomially as appropriate for 
the LP or SOCP formulation. 
 
 
 
Application: tracking objects through WSN 
 
A specific application of the described techniques is tracking an object through the sensor 
network. The sensing radius can be modeled as in the radial constraint case. If multiple 
nodes can sense the object, the same set intersection methods via SDP can be utilized to 
estimate the object’s position. This is a problem with only one unknown – the position of 
the tracked object – and n known node positions. The solution should hence be rapid and 
possibly simple enough to accomplish using the microprocessor of a sensor node. Of 
course, this can be extended to track k objects concurrently, analogous to estimating k 
unknown node positions. 
 



Major deficiencies and research directions 
 
Scalability 
 
As networks grow beyond 2000 nodes, the problems (particularly the radial constraint 
method) become computationally intensive, an alarming result for scaling to networks of 
hundreds of thousands of nodes. Two options for tackling the issue: limiting the number 
of constraints at each node and solving the problem hierarchically. In the latter approach 
we may use clustering algorithms for dividing a networks into a number of subnetworks. 
Solving the localization problems separately for each subnetwork with respect to its 
(unknown) center and considering centers as virtual nodes in the larger network, we may 
achieve good scalability with multiple hierarchical steps. 
 
Anchor nodes placement problem 
 
If the anchor nodes are placed to the interior of the network, the estimated positions will 
lie inside the convex hull of the anchor nodes, yielding possibly highly inaccurate results. 
 
Erroneous data management problem 
 
The approach does not offer any means for detecting erroneous connections. If a 
proximity constraint is fallaciously reported, the algorithm will, in general, fail. Testing 
for such errors is as difficult as solving the position estimation problem itself. 
 
[2] addresses the last two deficiencies by using information contained in non-convex 
distance constraints. 
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