Rumor Routing Algorithm

Aleksi Ahtiainen Aleksi.Ahtiainen@hut.fi

T-79.194 Seminar on Theoretical Computer Science Feb 9 2005

Rumor Routing Algorithm

T-79.194 – Spring 2005

Contents

- Introduction
- The Algorithm
- Research Results
- Future Work
- Criticism
- Conclusions

Introduction

- Rumor Routing Algorithm is described in paper:
 - D.Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In WSNA '02: Proceedings of the 1st ACM international workshop on wireless sensor networks and applications, pages 22-31. ACM Press, 2002.

Routing in Wireless Sensor Networks (WSNs)

 \bigcirc

- How to reach event nodes from the query node?
- Route consists of short hops
- Event is a localized phenomenon detected by some node(s)
 - Query can be:
 - 1. A request for information
 - 2. Orders to collect more data
 - 3. Some unlocalized order, e.g. "Find a node with a camera and enough power to use it, and order it to take a photograph"

Challenges of WSN Routing

- Energy is in short supply
 - Use only short-distance message transmission
 - Minimize number of transmissions
- Wireless ad-hoc network with possibly failing nodes
- Often no common coordinate system available for the nodes

Traditional Routing [1/2]

- Event flooding:
 - When node detectd an event, it broadcasts information about it in its surroundings and other nodes repeat this
 - The nodes store the information, where they received the event from for later querying and/or the event is noticed by some monitoring query node
 - Transmission energy comparable to Event count * Node count
- Query flooding:
 - Query node broadcasts the query through the whole network
 - Transmission energy relative to Query count * Node count

Rumor Routing Algorithm

T-79.194 – Spring 2005

Traditional Routing [2/2]

- Problems with flooding:
 - High energy consumption due to unnecessary transmissions
 - Message loss due to collisions caused by many simultaneous transmissions
- For example probabilistic broadcast has been suggested
- If geographical information is available, greedy shortest path algorithms can be used

Solution: Rumor Routing

• Main idea:

- Agent messages precreate paths leading to event nodes as the events happen
- Later queries are sent on random walk until they find one of the paths, and then route along the path to event nodes

Rumor Routing Algorithm

When to Use Rumor Routing?

- Small amount of data flowing back from event to query node. Otherwise cases better to find the shortest route by query flooding.
- No coordinate system available. Otherwise greedy shortest path algorithms are better.
- Each node has distinct identification number and knowledge of neighboring nodes
- Nodes have similar transmission functionality (no hierarchy)

Algorithm - Basics

- Each node has
 - A neighbor list (generated when the network is initiated)
 - An event table with forwarding information to events it knows of
 - Possibly timestamped for expiration

Agents [1/4]

- When a node detects an event it:
 - => stores a path of distance zero to the event in the node
 - => creates an agent probabilistically:
 - reason for using probability: usually many nodes notice the same event
- Agent travels for some maximum amount of hops
- Agent contains an event table and combines it with event tables in visited nodes

Agents [2/4]

 Agents aggregate paths

Rumor Routing Algorithm

T-79.194 – Spring 2005

Agents [3/4]

• Agents optimize longer paths

Rumor Routing Algorithm

T-79.194 – Spring 2005

Agents [4/4]

- Agents use a straightening algorithm:
 - Record recently seen nodes and avoid travelling to them if possible
- Neighboring nodes often overhear messages not sent directly to them and can use the information to optimize paths
 - So in fact the paths created by agents are thick trails

Routing Queries

- Query also has some maximum number of hops
- First random walk, then along the path
- If destination was not reached, the query node can either retransmit or flood
- Straightening algorithm used in the random walk
- Possible loops in agent paths can be avoided:
 - Use random ids for queries,
 - store recently seen query ids in nodes and
 - when nodes receive a query on the list, they send it in random direction instead of along the path

Rumor Routing Algorithm

T-79.194 – Spring 2005

Research Setting

- Paper describes simulation results
- 200x200m² 2-dimensional area with node communication radius of 5 meters
- 3000-5000 randomly scattered nodes
- All events also at 5m-radius circles
- Precreated event distribution (10-100 events) and agent paths
- After that 1000 queries to random events from random query nodes
- Queries flooded after first failure
- Different agent and query hop counts tested

T-79.194 – Spring 2005

Research Results [1/2]

- With minimal setup costs (small agent hop count and less than 25 agents) only 60% of queries successfully delivered. Even query flooding would have been better.
- With high setup costs (over 400 agents) algorithm had setup costs higher than event flooding, but the query routing success was 99.9%
- Best settings: Small number of agents (31 for 10 events) and high agent maximum hop count (1000), 98.1% of queries were delivered with average energy of $1/40^{th}$ of query flood. Setup cost was was then equal to about 8 query floods.
 - Rumor routing better than flooding when gueries per event between 5 and 36

Rumor Routing Algorithm T-79.194 – Spring 2005

Research Results [2/2]

- Algorithm had stable results over several test runs
- But the guaranteed query delivery rate depended heavily on the random distribution of events and queries, i.e. it is difficult to guarantee some energy use for real-life situations
- Fault-tolerant up to 20% node failures, above this strong performance loss

Rumor Routing Algorithm

T-79.194 – Spring 2005

Future Work [1/2]

- Network dynamics and asynchronous events
 - In reality events occur in time and algorithm is likely to favor older events
- Collisions
 - Rumor routing is likely to suffer less from collisions than flooding algorithms
- Non-localized events.
 - How are queries like "find a node with a camera and enough power" handled
- Non-random query pattern
 - Often queries are generated by base-stations or in some networks by nodes close to the actual events

Rumor Routing Algorithm T-79.194 – Spring 2005

Future Work [2/2]

- Non-random next hop selection in the algorithm
 - If some localization information is available, agents could leave behind information on already visited regions and other agents could later try to cover these
- Use of constrained flooding
 - Instead of random walk, queries could first be flooded at a short distance. Problem is then, how to decide which queries to forward
- Parameter setting exploration
 - Optimal parameters depend heavily on the event and query patterns, perhaps the algorithm could somehow configure itself on the fly

Criticism

- The authors do not describe any method (except brute force) for finding good parameter values
- Test settings and results are not described very thoroughly

Conclusion

 Rumor routing is a good and tunable algorithm for many situations, in which flooding would generate too much traffic and geographic information is not available