Helsinki University of Technology Laboratory for Theoretical Computer Science

Timo Latvala (tel 2895). Tommi Syrjänen (tel 5082)

T-79.148 Introduction to Theoretical Computer Science (2 cr) Exam Mon 22 August, 12-15 p.m.

Write down on each answer sheet:

- Your name, degree program, and study book number
- The text: "T-79.148 Introduction to Theoretical Computer Science 22.8.2005"
- The total number of answer sheets you are submitting for grading
 - 1. Regular languages.

Find the minimal (deterministic) finite automaton, describing the language $\{w \in \{a,b\}^* \mid |w| > 2 \text{ and the second last character is an } a\}$.

15 p.

- 2. Give a context-free grammar that produces the language $\{a^n cccb^m \mid m = n + 2\}$. Show a parse tree of your grammar for the sentence acccbbb.
- 3. Present a push-down automaton for the language in assignment 2. Describe your automaton using state charts.

10 p.

- 4. The language class \mathcal{C} is closed w.r.t. complementation if for every $L \in \mathcal{C}$ we have that $\bar{L} \in \mathcal{C}$.
 - (a) Show that the class of regular languages is closed w.r.t. complementation.

5 p.

(b) Show that the class of recursive languages is closed w.r.t. complementation.

5 p.

(c) Show that the class of context-free languages is not closed w.r.t. complementation. Hint: the language $L = \{a^n b^n c^n \mid n \geq 0\}$ is not context-free.

5 p.

(d) Give a regular expression for the complement of the language given by the regular expression $(a \cup b) (a \cup b)^*$.

5 p.

Total 60 p.