Helsinki University of Technology Laboratory for Theoretical Computer Science Harri Haanpää (tel. 5243), Tommi Syrjänen (tel. 5082)

T-79.148 Introduction to Theoretical Computer Science (2 cr) Exam Mon 16 Feb 2004, 4 p.m. – 7 p.m.

Write down on each answer sheet:

- Your name, department, and study book number
- The text: "T-79.148 Introduction to Theoretical Computer Science 16.02.2004"
- The total number of answer sheets you are submitting for grading
 - 1. Let the alphabet of the finite state automaton M be $\Sigma = \{a, b\}$. The transition function of M is described in Figure 1; the initial state is marked with \rightarrow and accepting final states are marked with \leftarrow . The automaton M recognizes the language L.
 - (a) Determine the minimal deterministic finite state automaton that recognizes the language L. g p.
 - (b) Present L as a regular expression.

	a	b
$\rightarrow A$	В	Е
В	C	F
$\leftarrow \mathbf{C}$	D	Η
D	E	Η
Ε	F	Ι
$\leftarrow \mathbf{F}$	G	В
G	H	В
Η	Ι	С
\leftarrow I	A	Ε

Figure 1: The finite state automaton M in tabular form

- 2. Let us define a string of properly nested parentheses inductively: ε is a string of properly nested parenthesis, and if x and y are strings of properly nested parenthesis, then so are (x), [y], and xy. For example, ([])[] ja [([])] are strings of properly nested parenthesis, but ([], [) and]()[are not. Let L be the language of strings of properly nested parenthesis.
 - (a) Prove in detail that L is not regular. 8 p.
 - (b) Design a context-free grammar that produces L. 8 p.
 - (c) Design a pushdown automaton that recognizes L. 9 p.
- 3. (a) Define the concepts recursive language and recursively enumerable language. What is their most important difference? 5 p.
 - (b) Prove that if the language L is recursive, then so is the language

$$L^* = \bigcup_{k \ge 0} L^k = \{ w_1 \dots w_k \mid k \ge 0, w_i \in L \text{ for all } 1 \le i \le k \}.$$

Total 60 p.

15 p.

6 p.