Helsinki University of Technology

Laboratory for Theoretical Computer Science
Harri Haanpää (tel. 5243), Tommi Syrjänen (tel. 5082)

T-79.148 Introduction to Theoretical Computer Science (2 cr) Exam Mon 16 Feb 2004, 4 p.m. - 7 p.m.

Write down on each answer sheet:

- Your name, department, and study book number
- The text: "T-79.148 Introduction to Theoretical Computer Science 16.02.2004"
- The total number of answer sheets you are submitting for grading

1. Let the alphabet of the finite state automaton M be $\Sigma=\{a, b\}$. The transition function of M is described in Figure 1; the initial state is marked with \rightarrow and accepting final states are marked with \leftarrow. The automaton M recognizes the language L.
(a) Determine the minimal deterministic finite state automaton that recognizes the language L.

9 p.
(b) Present L as a regular expression.
$6 p$.

	a	b
$\rightarrow \mathrm{~A}$	B	E
B	C	F
$\leftarrow \mathrm{C}$	D	H
D	E	H
E	F	I
$\leftarrow \mathrm{F}$	G	B
G	H	B
H	I	C
$\leftarrow \mathrm{I}$	A	E

Figure 1: The finite state automaton M in tabular form
2. Let us define a string of properly nested parentheses inductively: ε is a string of properly nested parenthesis, and if x and y are strings of properly nested parenthesis, then so are $(x),[y]$, and $x y$. For example, ([]) [] ja [([])] are strings of properly nested parenthesis, but ([], [) and] () [are not. Let L be the language of strings of properly nested parenthesis.
(a) Prove in detail that L is not regular. $8 p$.
(b) Design a context-free grammar that produces L. $8 p$.
(c) Design a pushdown automaton that recognizes L. $9 p$.
3. (a) Define the concepts recursive language and recursively enumerable language. What is their most important difference?
(b) Prove that if the language L is recursive, then so is the language

$$
L^{*}=\bigcup_{k \geq 0} L^{k}=\left\{w_{1} \ldots w_{k} \mid k \geq 0, w_{i} \in L \text { for all } 1 \leq i \leq k\right\}
$$

