Helsinki University of Technology

Laboratory for Theoretical Computer Science

Harri Haanpää (tel. 5243), Tommi Syrjänen (tel. 5082)

T-79.148 Introduction to Theoretical Computer Science (2 cr) Exam Fri 19 Dec 2003, 10 a.m. - 1 p.m.

Write down on each answer sheet:

- Your name, department, and study book number
- The text: "T-79.148 Introduction to Theoretical Computer Science 19.12.2003"
- The total number of answer sheets you are submitting for grading

1. Describe the following languages both in terms of regular expressions and in terms of deterministic finite automata:
(a) $L=\left\{w \in\{a, b, c\}^{*} \mid w\right.$ contains $a c$ or $a b c$ (or both) as a substring $\}$ $7 p$.
(b) $\bar{L}=\left\{w \in\{a, b, c\}^{*} \mid w\right.$ does not contain $a c$ or $a b c$ as a substring $\}$. $8 p$.

Hint: It may be easiest to derive the solution to (b) from the solution to (a).
2. (a) Describe the language generated by the following context-free grammar:

$$
\begin{aligned}
S & \rightarrow A S b \mid \epsilon \\
A & \rightarrow a A \mid a
\end{aligned}
$$

(b) Show that the grammar in (a) is ambiguous. $5 p$.
(c) Give an unambiguous context-free grammar that generates the same language as the grammar in (a).
$5 p$.
3. Design a deterministic single-tape Turing machine that replaces its input string $w \in$ $\{a, b\}^{*}$ by the string $w w$. (Present the Turing machine preferably as a state diagram rather than a transition table.) Show the computation sequences ("runs") of your machine on inputs a and $a b$.
4. (a) Show that if the language L is regular, then the language \bar{L} (the complement of L) is also regular.
(b) Show that if the languages L_{1} and L_{2} are context-free, then the language $L_{1} \cup L_{2}$ is also context-free.
(c) Show that if the languages L_{1} and L_{2} are recursively enumerable, then the language $L=L_{1} \cap L_{2}$ is also recursively enumerable.

Total 60p.
After the exam, please fill in the feedback form on the WWW page of the course.

