T-79.148 Spring 2005

Introduction to Theoretical Computer Science Tutorial 7, 8-11 March Problems

Homework problems:

1. Design a right-linear grammar that generates the language

$$\{w \in \{a,b\}^* \mid \text{ contains the substring } ab \text{ exactly twice } \}$$

(Cf. Problem 3/1c.)

2. Consider the following grammar generating a certain type of list structures:

$$S \rightarrow (S) \mid S, S \mid a$$
.

- (a) Based on the above grammar, give a leftmost and rightmost derivation and a parse tree for the sentence "(a,(a))".
- (b) Prove that the grammar is ambiguous.
- (c) Design an unambiguous grammar generating the same language.
- 3. Consider the following context-free grammar:

$$\begin{split} S \rightarrow TT \mid U \\ T \rightarrow 0T \mid T0 \mid 1 \\ U \rightarrow 0U00 \mid 1 \end{split}$$

- (a) Describe the language of the grammar verbally.
- (b) Show that the language is not regular.

Demonstration problems:

- 4. Prove that the class of context-free languages is closed under unions, concatenations, and the Kleene star operation, i.e. if the languages $L_1, L_2 \subseteq \Sigma^*$ are context-free, then so are the languages $L_1 \cup L_2$, L_1L_2 and L_1^* .
- 5. (a) Prove that the following context-free grammar is ambiguous:

- (b) Design an unambiguous grammar that is equivalent to the grammar in item (a), i.e. that generates the same language. (Hint: Introduce new nonterminals B and U that generate, respectively, only "balanced" and "unbalanced" if-then-else-sequences.)
- 6. Design a recursive-descent (top-down) parser for the grammar from Problem 6/6.