
T-79.148 Spring 2004
Introduction to Theoretical Computer Science
Tutorial 12
Solutions to the demonstration problems

4 Problem:

Prove, without appealing to Rice’s theorem, that the following problem is undecidable:

Given a Turing machine M ; does M accept the empty string?

Solution:

First we define a language L = {M | M halts with the input ε}. Now, L is recursive
if and only if the decision problem in the exercise statement is decisive. Next we show
that the language H = {Mw | M halts with input w} can be recursively reduced to L
(denoted H ≤m L) so L is at least as difficult as H. Since H is not recursive, L may not
be recursive, either.

The concept of a recursive reduction is defined as follows: Let A ⊆ Σ∗ and B ⊆ Γ∗ be
languages. Now A ≤m B if and only if there exists a recursive functionf : Σ∗ → Γ∗ such
that

∀w ∈ Σ∗ : w ∈ A ⇔ f(w) ∈ B .

In this case we want to find a function f such that f(Mw) ∈ L if and only if Mw ∈ H. In
practice this means that we want to find a systematic way to construct a Turing machine
M ′ that halts with an empty input exactly when M halts with w = w1w2 · · ·wn.

Fortunately, this is an easy thing to do: M ′ starts by writing w to its tape and after that
it simulates M . Now M ′ stops only if M stops.

Formally, f can be defined as:

f(〈Q,Σ,Γ, δ, q0, qacc, qrej〉, w1w2 · · ·wn) = 〈Q′,Σ,Γ, δ′, q′0, qacc, qrej〉,

where

Q′ = Q ∪ {q′i | 0 ≤ i ≤ n}
δ′ = δ ∪ {〈q′i, ε, q′i+1, wi+1, R〉 | 0 ≤ i < n}

∪ {〈q′n, x, q′n, x, L〉 | x ∈ Γ ∪ {<}}
∪ {〈q′n, >, q0, >, R〉}

Since we add only a finite number of states and transitions to M (n has to be finite), f
is trivially recursive.

5. Problem: Prove the following connections between recursive functions and languages:

(i) A language A ⊆ Σ∗ is recursive (“Turing-decidable”), if and only its characteristic
function

χA : Σ∗ → {0, 1}, χA(x) =
{

1, if x ∈ A;
0, if x /∈ A

is a recursive (“Turing-computable”) function.

(ii) A language A ⊆ Σ∗ is recursively enumerable (“semidecidable”, “Turing-recognisable”),
if and only if either A = ∅ or there exists a recursive function g : {0, 1}∗ → Σ∗ such
that

A = {g(x) | x ∈ {0, 1}∗}.



Solution: We start by defining five simple helper machines:

• 1 writes ’1’ to the input tape, moves the read/write head to right and stops.
• 0 writes ’0’ to the tape and stops.
• C empties the input tape, moves the head to the beginning of the tape and stops.
• NEXT reads the input x ∈ Σ∗ and replaces it with the lexicographic successor of x.
• Cmpi,j compares the contents of the input tapes i and j of a multi-tape Turing

machine and accepts if they are identical.

Since the machines are simple, they are not presented here.

(i) [⇒] Let A ⊆ Σ∗ be a recursive language. Then there exists a Turing machine MA:

MA = 〈Q, Σ,Γ, δ, q0, qacc, qrej〉

such that
∀w ∈ Σ∗ : w ∈ L ⇔ (q0, w) `∗

MA
(qacc, α) ja

w /∈ L ⇔ (q0, w) `∗
MA

(qrej, α)

We construct a machine M by combining MA with machines 1, 0, C as follows:

q′0

MA

C

C

1

0

If w ∈ L, then MA accepts w. After that M clears the tape and writes 1 to the tape.
Otherwise 0 is written. Since A is recursive, MA halts always so also M halts and it

computes the function χ(w) =

{
1, w ∈ A

0, w /∈ A
that is the characteristic function of A.

[⇐] Suppose that the function χ(w) is recursive. Then there exists a Turing machine
Mχ that computes it. We can now construct a machine M as follows:

Mχ x, x/L
1, 1/R

0, 0/R

Now M accepts w whenever χ(w) = 1 and rejects it when χ(w) = 0, so M decides
the language A and A is recursive.

(ii) If A = ∅, then trivially A ∈ RE and g(x) = 0 is its characteristic function.
If there exists a function g that fulfills the conditions, then there exists a Turing
machine Mg that computes g. We can trivially modify it so that it becomes a 2-tape
machine M1,2

g that computes g but stores the result in the second tape instead of
the first. We now construct a 3-tape machine as follows:

NEXT2 M2,3
g

Cmp1,3



The machine gets its input from its first tape and it stays untouched for the whole
computation. In each iteration MA replaces the bit string x on the second tape by
its lexicographic successor y, computes g(y) and writes the output on the third tape.
Finally, the contents of tapes 1 and 3 are compared and if they match, the word is
accepted, otherwise the iteration proceeds into the next round.
[⇐] Consider the word w ∈ A. Suppose that a recursive function g that fulfills the
conditions exists. Then w = g(x) for some x = x1x2 · · ·xn where n is finite. Since
each finite string has a finite number of predecessors in the lexicographic order,
NEXT eventually generates x, M2,3

g generates w on the third tape and MA accepts
the word. Thus, MA recognizes the language A so A ∈ RE.
[⇒] Next, suppose that A ∈ RE−{∅}. Then there exists a Turing machine MA that
recognizes it. We now define a helper machine MA,i that simulates MA for i steps.
The machine MA,i accepts x if MA accepts it using at most i steps, and rejects it
otherwise. We note that MA,i always halts.
We construct the function g with the help of MA,i. Every input x and bound i is enco-
ded into bit strings using the function c(x, y) = 0x10y. We define that g(c(x, y)) = x,
if MA,y accepts x. We define that g′ : {0, 1}∗ → {0, 1}∗ is the function:

g′(w) =

{
x, w = 0x10y and MA,y(x) accepts
x0, otherwise ,

where x0 ∈ A. Finally, g(x) = d(g′(x)) where d is a function that maps a bit string
0x into the xth element of n Σ∗ in the lexicographic order. The value of g′ may be
computed in a finite time since MA,y(x) always halts. Thus, g′ is recursive and so
also g is.
Note that while g always exists, it is not always possible to find it since in the general
case it is an undecidable problem to find an element x0 ∈ A that is needed for the
definition.


