Introduction to Theoretical Computer Science

Tutorial 9, 16-17 November
Problems

Homework problems:

$N B$: The Turing machines requested in the following problems are most conveniently presented in diagram form.

1. Design a Turing machine that recognises ("decides") the language

$$
\left\{w \in\{0,1\}^{*} \mid \text { the third-to-last symbol in } w \text { is a } 1\right\} .
$$

Show the computation sequences ("runs") of your machine on inputs 0100, 100 and 00 .
2. Design a Turing machine that replaces an input string $w \in\{a, b\}^{*}$ given on the tape by its lexicographic successor. I.e., if the input is not of the form $w=b^{n}$, then it is replaced by the alphabetically next string of length n; if on the other hand the input is of the form $w=b^{n}$, then it is replaced by a^{n+1}.
3. (a) Show that the language $\left\{w c w \mid w \in\{a, b\}^{*}\right\}$ is not context-free. (Hint: Consider strings of the form $a^{n} b^{n} c a^{n} b^{n}$.)
(b) Design a Turing machine that recognises ("semidecides", or in this case even "decides") the above language.

Demonstration problems:

4. Prove that the class of context-free languages is not closed under intersections and complements. (Hint: Represent the language $\left\{a^{k} b^{k} c^{k} \mid k \geq 0\right\}$ as the intersection of two context-free languages.)
5. Show that pushdown automata with two stacks (rather than just one as permitted by the standard definition) would be capable of recognising exactly the same languages as Turing machines.
