T-79.148 Spring 2003
Introduction to Theoretical Computer Science

Tutorial 7

Solutions to the demonstration problems

4. Problem: Prove that the class of context-free languages is closed under unions, concate-
nations, and the Kleene star operation, i.e. if the languages L1, Lo C ¥* are context-free,
then so are the languages Ly U Lo, L1Ly and Lj.

Solution: Let L; and Lo be context-free languages that are defined by grammars G; =
(V1,%1,R1,S1) and G2 = (Va, o, Ry, S2). In addition we require that (V3 — %) N (Vo —
o) = 0. That is, the grammars may not have any common nonterminals. Since the
nonterminals may be renamed if necessary, this is not an essential limitation.

Union: Let S be a new nonterminal and G = (V;UVLU{S} 1 UXo, RyUR U{S —
Sy | Sa2}, S} Now L(G) = L(G1) U L(G2) = Ly U La. This holds, since the initial
symbol S may derive only S; or Sy, and they in turn may derive only strings that
belong to the respective languages. (If the sets of nonterminals were not disjoint, this
would not hold).

Concatenation: The language Lj Lo is defined by the following grammar:G = (V4 U
VQ U {S}, 21 U EQ,Rl U RQ U {S — Slsg}, S}

Kleene star: The language Li is defined by the following grammar: G = (V4 U
{S},Zl,Rl U {S — e|SSl},S}

5. Problem: Prove that the following context-free grammar is ambiguous:

S — if bthen S
S — if bthen Selse S

S — s

Design an unambiguous grammar that is equivalent to the grammar, i.e. one that generates
the same language.

Solution: A context-free grammar is ambiguous if there exists a word w € L(G) such
that w has at least two different parse trees. The simplest word for the given grammar
that has this property is:

if b then if b then s else s.

Its two parse trees are:

S
if b then S
if b then S else S
s s
S
if b then S else S
if b then S s

Usually we want to associate an else-branch to the closest preceeding if-statement. In
this case the former tree corresponds to this practice.

We define a grammar G as follows:

G=(V,%,PS)
V ={S,B,U, s,b,if, then, else}
¥ = {s,b,if, then, else}
P={S—B|U
B —if bthen B else B | s
U — if b then S | if b then B else U}
Here the nonterminal B is used to derive balanced programs where each if-statement has

both then- and else-branches. The nonterminal U derives those if-statements that do
not have an else-branch.

6. Problem: Design a recursive-descent (top-down) parser for the grammar from Problem
6/6.

Solution: The following C-program implements a top-down parser for the following gram-
mar:

cC—-S5|S;C
S — a | begin C end | for n times do S

This grammar is a simplified form of the one in problem 6.6. The difference is that all
different numbers are replaced by a new terminal symbol n that denotes a number.

The most important functions of the program are:

— CQO, 8O — implement the rules of the program.

— lex() — read the next lexeme from the input, and store it in a global variable
current_tok.

— expect(int token) — tries to read the lexeme token from input. Gives an error
message if it fails.

— consume_token() — mark the current lexeme used. This is necessary because so-
metimes we have to have a one-token lookahead before we know what rule we must
apply.

In practice, the programming language parsers are implemented using lez and yacc tools'.
Of these, lex generates a finite automaton-based lexical analyser from identifying lexe-
mes that have been defined using regular expression, and yacc constructs a pushdown
automaton-based parser for a given context-free grammar.

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

/* Define the alphabet */

enum TOKEN { DO, FOR, END, BEGIN, TIMES, OP, SC, NUMBER, ERROR };

const char* tokens[] = { "do", "for", "end", "begin", "times", "a",
";" "NUMBER", NULL };

/* A global variable holding the current token */
int current_tok = ERROR;

1Or some of their derivatives, like flex or bison.

/* Maximum length of a token */
#define TOKEN_LEN 128

/* declare functions corresponding to nonterminals */
void S(void);
void C(void);

int lex(void);

void consume_token(void);
void error(char *st);
void expect(int token);

void C(void)

{
SO;
lex();
if (current_tok == SC) {
consume_token() ;
cO;
printf("C => S ; C\n");
} else {
printf("C => S\n");
}
}
void S(void)
{
lex();
switch (current_tok) {
case 0OP:
consume_token() ;
printf("S => a\n");
break;
case BEGIN:
consume_token() ;
cO;
expect (END) ;
printf("S => begin C end\n");
break;
case FOR:
consume_token() ;
expect (NUMBER) ;
expect (TIMES) ;
expect (DO) ;
SO;
printf("S => for N times do S\n");
break;
default:
error ("Parse error");
}
}

/* int lex(void) returns the next token of the input. */

int lex(void)
{
static char token_text[TOKEN_LEN];
int pos = 0, ¢, i, next_token = ERROR;

/* Is there an existing token already? */
if (current_tok != ERROR)
return current_tok;

/* skip whitespace */
do {
c = getchar();
} while (c !'= EOF && isspace(c));
if (c != EOF) ungetc(c, stdin);

/* read token */
¢ = getchar();
while (c != EOF && c !'= ’;’ && !isspace(c) && pos < TOKEN_LEN) {
token_text [pos++] = c;
c = getchar();
}
if (c==";") {
if (pos == 0) /* semicolon as token */
next_token = SC;
else { /* trailing semicolon, leave it for future */
ungetc(’;’, stdin);
}
}
token_text[pos] = ’\0’; /* trailing zero */

/* identify token */
if (isdigit(token_text[0])) { /* number? */
next_token = NUMBER;
} else { /* not a number */
for (i = DO; i < NUMBER; i++) {
if (!strcmp(tokens[i], token_text)) {
next_token = i;
break;
}
}
}
current_tok = next_token;
return next_token;

}
void consume_token(void)
{
current_tok = ERROR;
}
void error(char *st)
{
printf(st);

exit(1);

3

/* try to read a ’token’ from input */
void expect(int token)
{
int next_tok = lex();
if (next_tok == token) {
consume_token() ;
return;
} else
error ("Parse error");

}

int main(void)
{

int i;

cO;

return O;

}

