
T-79.148 Spring 2003
Introduction to Theoretical Computer Science
Tutorial 7
Solutions to the demonstration problems

4. Problem: Prove that the class of context-free languages is closed under unions, concate-
nations, and the Kleene star operation, i.e. if the languages L1, L2 ⊆ Σ∗ are context-free,
then so are the languages L1 ∪ L2, L1L2 and L∗

1.

Solution: Let L1 and L2 be context-free languages that are defined by grammars G1 =
(V1,Σ1, R1, S1) and G2 = (V2,Σ2, R2, S2). In addition we require that (V1 − Σ1) ∩ (V2 −
Σ2) = ∅. That is, the grammars may not have any common nonterminals. Since the
nonterminals may be renamed if necessary, this is not an essential limitation.

Union: Let S be a new nonterminal and G = (V1∪V2∪{S},Σ1∪Σ2, R1∪R2∪{S →
S1 | S2}, S}. Now L(G) = L(G1) ∪ L(G2) = L1 ∪ L2. This holds, since the initial
symbol S may derive only S1 or S2, and they in turn may derive only strings that
belong to the respective languages. (If the sets of nonterminals were not disjoint, this
would not hold).

Concatenation: The language L1L2 is defined by the following grammar:G = (V1 ∪
V2 ∪ {S},Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1S2}, S}
Kleene star : The language L∗

1 is defined by the following grammar: G = (V1 ∪
{S},Σ1, R1 ∪ {S → ε|SS1}, S}

5. Problem: Prove that the following context-free grammar is ambiguous:

S → if b then S

S → if b then S else S

S → s.

Design an unambiguous grammar that is equivalent to the grammar, i.e. one that generates
the same language.

Solution: A context-free grammar is ambiguous if there exists a word w ∈ L(G) such
that w has at least two different parse trees. The simplest word for the given grammar
that has this property is:

if b then if b then s else s.

Its two parse trees are:

S

if b then S

if b then S

s

else S

s

S

if b then S

if b then S

s

else S

s

Usually we want to associate an else-branch to the closest preceeding if -statement. In
this case the former tree corresponds to this practice.

We define a grammar G as follows:

G = (V,Σ, P, S)
V = {S, B, U, s, b, if, then, else}
Σ = {s, b, if, then, else}
P = {S → B | U

B → if b then B else B | s
U → if b then S | if b then B else U}

Here the nonterminal B is used to derive balanced programs where each if -statement has
both then- and else-branches. The nonterminal U derives those if -statements that do
not have an else-branch.

6. Problem: Design a recursive-descent (top-down) parser for the grammar from Problem
6/6.

Solution: The following C-program implements a top-down parser for the following gram-
mar:

C → S | S;C
S → a | begin C end | for n times do S

This grammar is a simplified form of the one in problem 6.6. The difference is that all
different numbers are replaced by a new terminal symbol n that denotes a number.

The most important functions of the program are:

– C(), S() — implement the rules of the program.

– lex() — read the next lexeme from the input, and store it in a global variable
current tok.

– expect(int token) — tries to read the lexeme token from input. Gives an error
message if it fails.

– consume token() — mark the current lexeme used. This is necessary because so-
metimes we have to have a one-token lookahead before we know what rule we must
apply.

In practice, the programming language parsers are implemented using lex and yacc tools1.
Of these, lex generates a finite automaton-based lexical analyser from identifying lexe-
mes that have been defined using regular expression, and yacc constructs a pushdown
automaton-based parser for a given context-free grammar.

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

/* Define the alphabet */
enum TOKEN { DO, FOR, END, BEGIN, TIMES, OP, SC, NUMBER, ERROR };
const char* tokens[] = { "do", "for", "end", "begin", "times", "a",

";", "NUMBER", NULL };

/* A global variable holding the current token */
int current_tok = ERROR;

1Or some of their derivatives, like flex or bison.

/* Maximum length of a token */
#define TOKEN_LEN 128

/* declare functions corresponding to nonterminals */
void S(void);
void C(void);

int lex(void);
void consume_token(void);
void error(char *st);
void expect(int token);

void C(void)
{
S();
lex();
if (current_tok == SC) {
consume_token();
C();
printf("C => S ; C\n");

} else {
printf("C => S\n");

}
}

void S(void)
{
lex();
switch (current_tok) {
case OP:
consume_token();
printf("S => a\n");
break;

case BEGIN:
consume_token();
C();
expect(END);
printf("S => begin C end\n");
break;

case FOR:
consume_token();
expect(NUMBER);
expect(TIMES);
expect(DO);
S();
printf("S => for N times do S\n");
break;

default:
error("Parse error");

}
}

/* int lex(void) returns the next token of the input. */

int lex(void)
{
static char token_text[TOKEN_LEN];
int pos = 0, c, i, next_token = ERROR;

/* Is there an existing token already? */
if (current_tok != ERROR)
return current_tok;

/* skip whitespace */
do {
c = getchar();

} while (c != EOF && isspace(c));
if (c != EOF) ungetc(c, stdin);

/* read token */
c = getchar();
while (c != EOF && c != ’;’ && !isspace(c) && pos < TOKEN_LEN) {
token_text[pos++] = c;
c = getchar();

}
if (c == ’;’) {
if (pos == 0) /* semicolon as token */
next_token = SC;

else { /* trailing semicolon, leave it for future */
ungetc(’;’, stdin);

}
}
token_text[pos] = ’\0’; /* trailing zero */

/* identify token */
if (isdigit(token_text[0])) { /* number? */
next_token = NUMBER;

} else { /* not a number */
for (i = DO; i < NUMBER; i++) {
if (!strcmp(tokens[i], token_text)) {
next_token = i;
break;

}
}

}
current_tok = next_token;
return next_token;

}

void consume_token(void)
{
current_tok = ERROR;

}

void error(char *st)
{
printf(st);
exit(1);

}

/* try to read a ’token’ from input */
void expect(int token)
{
int next_tok = lex();
if (next_tok == token) {
consume_token();
return;

} else
error("Parse error");

}

int main(void)
{
int i;
C();
return 0;

}

