
T-79.148 Spring 2003
Introduction to Theoretical Computer Science
Tutorial 4
Solutions for demonstration exercises

4. Problem: Construct a nondeterministic finite automaton that tests whether in a given
binary input sequence the third-to-last bit is a 1. Make the automaton deterministic using
the subset construction.

Answer:: The language L = {w ∈ {0, 1}∗ | the third-to-last-bit of w is 1 } is recognized
by the following nondeterministic automatomaton M = (Q, Σ, δ, q1, F ), where

Q = {q1, q2, q3, q4}
Σ = {a, b}
F = {q4},

and the transition function δ is defined as follows:

q1 q2 q3 q4

1 0, 1 0, 1
0, 1

We now construct a deterministic automaton M ′ that recognizes the same language as
M . We take as the states of M ′ all subsets of Q (Q′ = P(Q)). These sets of states encode
all possible computations of M . For example, when M has read the input 010, it may be
either in state q1 or q3. So, after M ′ has read the same input, it has to be in the state
{q1, q3}.
We construct the transtition function δ′:

q 0 1 new name
{q1} {q1} {q1, q2} A

{q1, q2} {q1, q3} {q1, q2, q3} B
{q1, q3} {q1, q4} {q1, q2, q4} C

{q1, q2, q3} {q1, q3, q4} {q1, q2, q3, q4} D
{q1, q3, q4} {q1, q4} {q1, q2, q4} E×
{q1, q4} {q1} {q1, q2} F×

{q1, q2, q3, q4} {q1, q3, q4} {q1, q2, q3, q4} G×
{q1, q2, q4} {q1, q3} {q1, q2, q3} H×

All states that contain a final state of M are final states of M ′. In the above table these
are marked by ×.



A

B

C

D

E

F

G

H

0
1

0

1

0
1

0

1

0

1
0

1

1

0

0

1

5. Problem: Show that if languages A and B over the alphabet Σ = {a, b} are recognized
by some finite automata, then so are the languages Ā = Σ∗ −A, A ∪B, and A ∩B.

Solution: Let A,B ⊆ Σ∗ be languages that can be recognized by finite automata. We
now show that Ā, A∪B, and A∩B can also be recognized by finite automata by showing
how such automata can be constructed.

Ā: Let MA = (Q, Σ, δ, q0, F ) be a deterministic automaton1 that recognizes A (L(MA) =
A). We define an automaton MĀ as follows:

MĀ = (Q,Σ, δ, q0, Q− F ) .

Automaton MĀ works otherwise just as MA, but its accecpting states are exchanged
with its rejecting states. Thus, MĀ accepts precisely those strings that MA rejects,
and rejects those that MA accepts, so L(MĀ) = Ā.
For example, consider an automaton that recognizes the language:

A = {w ∈ Σ∗ | w is of the form axb, where x ∈ Σ∗} .

All strings that start with an a and end with a b are in L. The following two automata
recognize languages A and Ā:

MA:

a

b

a

b

a b

a, b

MĀ:

a

b

a

b

a b

a, b

Note that this construction works only if MA is deterministic. Try to find a counter
example for the nondeterministic case.

A ∪B: Let MA = (QA,Σ, δA, sA, FA) and MB = (QB ,Σ, δB , sB , FB) be finite automata
that recognize languages A and B. We suppose that the state sets are distinct, that
is, QA ∩ QB = ∅. This is not a serious limitation since the states of one of the
automata can be renamed if necessary.
We construct a nondeterministic finite automaton MA∪B as follows:

1MA necessarily exists since any nondeterministic finite automaton can be transformed into an equivalent
deterministic one.



MA∪B = (Q,Σ, δ, s, F ) ,

where

Q = QA ∪QB ∪ {s}
F = FA ∪ FB

δ = δA ∪ δB ∪ {(s, ε, sa), (s, ε, sb)} .

We construct MA∩B by combining the automata MA and MB . The state s is a new
initial state and from there is a nondeterministic ε-transition to initial states of MA

and MB .
If string x ∈ A, MA∪B accepts it by first making a nondeterministic transition to
sA, and then doing the same sequence of transitions that MA would have done.
Similarily, if x ∈ B, the first transition is to sB .
For example, consider the automaton MA that was presented above and a new
automaton MB that recognizes the language:

B = {w ∈ Σ∗ | w has a substring bb} .

MB : a
b

a

b

a, b

The language A ∪B can be recognized by the following automaton:

MA∪B :

a

b

a

b

a b

a, b
a

b

a

b

a, b

ε

ε

Often also a new final state f and transitions {(f ′, ε, f) | f ′ ∈ FA ∪ FB} are added
to MA∪B . In this case F = {f}.

A ∩B: This claim is a corollary of the two previous constructions, since

A ∩B = A ∪B .

Let us examine again the above automata MA and MB construct MA∩B using the
above DeMorgan rule.



MĀ:

a

b

a

b

a b

a, b

MB̄ : a
b

a

b

a, b

MĀ∪B̄ :

q1

q2

q3

q4

a

b

a

b

a b

a, b

q5 q6
q7

a
b

a

b

a, b

ε

ε

Before MĀ∪B̄ can be complemented, it has to be determinised (the following au-
tomaton is minimal, details of minimization are left in appendix):

M ′
Ā∪B̄

:

{q1, q5}

{q3, qx}

{q2, q5}

{q4, q6}

{q4, q7}

{q2, q7}

a

b

a, b

a

b a b a

b

b

a

We get the desired automaton by exchanging the accepting and rejecting states:
MA∩B :

{q1, q5}

{q3, qx}

{q2, q5}

{q4, q6}

{q4, q7}

{q2, q7}

a

b

a, b

a

b a b a

b

b

a

We could also define the intersection of two automata directly, using a method that
is analogous to the solution for the next exercise.

6. Problem: (Application)

Many methods for analyzing data transfer protocols construct the state space of the
system, which can be examined to find problems, e.g., deadlocks. One way of constructing
the state space of the system is to model each participant of the protocol with a finite
automaton and join these two into one big state machine.

Let M1 = (K1,Σ1,∆1, s1, ∅) and M2 = (K2,Σ2,∆2, s2, ∅) be nondeterministic automata.
The joint state machine M = (K, Σ,∆, s, ∅) is constructed in the following way:

– K = K1 ×K2



– Σ = Σ1 ∪ Σ2

– s = (s1, s2)

– The transition (p1, p2)
a→ (q1, q2) is in the relation ∆ if any of the following conditions

hold:

1. a ∈ Σ1 ∩ Σ2, (p1, a, q1) ∈ ∆1 and (p2, a, q2) ∈ ∆2.
2. a ∈ Σ1, a /∈ Σ2, (p1, a, q1) ∈ ∆1 and p2 = q2.
3. a /∈ Σ1, a ∈ Σ2, (p2, a, q2) ∈ ∆2 and p1 = q1.

Let M1 and M2 be as below. Construct the joint state machine M and show that
the system has a deadlock (i.e. from all states there is at least one transition)

M1:

q0 q1 q2 q3scmd rans1 rans2

int1

M2:

p0 p1

p2 p3

p4 p5

p6

p7

scmd

int2

int2

rans1 rans2

rans2 rans1

int2

int2

Solution: We use as the joint state set K the cartesian product of the state sets K1 and
K2. For example, if K1 = {q1, q2, q3} ja K2 = {p1, p2}, then the joint states are:

K = {(q1, p1), (q2, p1), (q3, p1), (q1, p2), (q2, p2), (q3, p2)} .

The idea is that the joint state holds the states of both individual automata.

The transitions of the individual automata are divided conceptually into two classes:
internal and external. A transition q

a−→ p is internal if a does not occur in the alphabet
of the other automaton. In this problem the only internal transition of M1 is q3

int1−→ q0.
The automaton M2 has four internal transitions that are all taken with input int2. If a
input symbol of a transition occurs in both alphabets, the transition is external.

The transition function of the joint automaton is defined such that the automata syn-
chronize on the external transitions; an automaton can always take internal transitions,
but external transitions can be made only if both automata read the same symbol at the
same time.

In this case the state sets of the automata are:

K1 = {q0, q1, q2, q3}
K2 = {p0, p1, p2, p3, p4, p5, p6, p7} ,

so the joint automaton has 4× 8 = 32 states. However, most of these cannot be reached
so they may be left out, and in the end the state space is:

K = {(q0, p0), (q1, p1), (q1, p2), (q1, p4), (q2, p3), (q3, p7), (q0, p7), (q3, p0)}

The transition function is defined as follows:



(q0, p0) (q1, p1)

(q1, p2)

(q1, p4) (q2, p3) (q3, p7)

(q0, p7)

(q3, p0)

scmd

int2

int2 rans1 rans2

int1

int2

int1

int2

As we see, there is no transitions from the state (q1, p2) and we can reach it starting from
the initial state using the following computation:

(q0, p0)
scmd→ (q1, p1)

int2→ (q1, p2) .

Thus, there is a reachable deadlock in the system.

Appendix: minimizing an automaton

Using the determinising algorithm we can transform the automaton MĀ∪Ā (of exercise 5)
into the following form:

A

B

C

D

E

F

G H

a

b

a
b

a
b

a, b

a

b a b a

b

b

a

Now we want to find the minimal deterministic automaton that recognizes the same
language. One algorithm is to define an equivalence relation

0≡ on the set of states and
refine it step-by-step until we reach the desired relation ≡.

In the first phase of the algorithm we remove all unreachable states. Since in this case all
states are reachable, nothing has to be done.

Next, we construct the first equivalence partition such that all accepting states are in one
class and all rejecting states in another:

0-equivalence:
Class State a b

I A C (I) B (I)
B G (I) H (I)
C C (I) D (I)
D C (I) E (II)
F F (I) E (II)
G G (I) B (I)
H H (I) H (I)

II E F (I) E (II)



We see from the table that from the class I states D and F the b-transition leads to a
state in class II, while for all other class I states the same transition leads to a class I
state. So we separate the two distinct states into their own class:

1-equivalence:
Class State a b

I A C (I) B (I)
B G (I) H (I)
C C (I) D (III)
G G (I) B (I)
H H (I) H (I)

II E F (III) E (II)
III D C (I) E (II)

F F (III) E (II)

This time states C and F do not fit in their classes and they have to be separated. This
procedure is continued until all classes are consistent:

2-equivalence: 3-equivalence:
Class State a b Class State a b

I A C (IV) B (I) I A C (IV) B (VI)
B G (I) H (I) II E F (V) E (II)
G G (I) B (I) III D C (IV) E (II)
H H (I) H (I) IV C C (IV) D (III)

II E F (V) E (II) V F F (V) E (II)
III D C (IV) E (II) VI B G (VI) H (VI)
IV C C (IV) D (III) G G (VI) B (VI)
V F F (V) E (II) H H (VI) H (VI)

All classes are now consistent so we can construct an automaton whose states are the
equivalence classes. The minimized automaton is shown as a state diagram in the solution
for exercise 5.

As a term, k-equivalence means that all states in a equivalence class treat all inputs that
are at most k symbols long in the same way; either they all accept the input or they all
reject it.


