T-79.148 Spring 2003
Introduction to Theoretical Computer Science

Tutorial 12

Solutions to the demonstration problems

4 Problem:

Prove, without appealing to Rice’s theorem, that the following problem is undecidable:
Given a Turing machine M; does M accept the empty string?

Solution:

First we define a language L = {M | M halts with the input €}. Now, L is recursive
if and only if the decision problem in the exercise statement is decisive. Next we show
that the language H = {Mw | M halts with input w} can be recursively reduced to L
(denoted H <,,, L) so L is at least as difficult as H. Since H is not recursive, L may not
be recursive, either.

The concept of a recursive reduction is defined as follows: Let A C ¥* and B C I'"* be
languages. Now A <,,, B if and only if there exists a recursive functionf : ¥* — I'* such
that

YweX:weAs flw)eB .

In this case we want to find a function f such that f(Mw) € L if and only if Mw € H. In
practice this means that we want to find a systematic way to construct a Turing machine
M’ that halts with an empty input exactly when M halts with w = wyws - - - w,,.

Fortunately, this is an easy thing to do: M’ starts by writing w to its tape and after that
it simulates M. Now M’ stops only if M stops.

Formally, f can be defined as:

f(<Q7 27F7 57 QO,Qacchrej>7wlw2 e wn) = <le Ea Fv(s/aq[,)a Gacc Qrej>a

where

Q' =QuU{g|0<i<n}

6" =dU{(g e qiy1,wir1, R) |0 <@ <n}
U{{gn, 2, qp, 2, L) | € TU{<}}
U{(gn,>,q0,> R)}

Since we add only a finite number of states and transitions to M (n has to be finite), f
is trivially recursive.

1. Problem: Prove the following connections between recursive functions and languages:

(i) A language A C ¥* is recursive (“Turing-decidable”), if and only its characteristic

function
) [ 1, ifze A;
xa: ¥ —{0,1}, XA(QS)_{(L ifx¢A

is a recursive (“Turing-computable”) function.

(ii) A language A C ¥* is recursively enumerable ( “semidecidable”, “Turing-recognisable” ),
if and only if either A = () or there exists a recursive function g : {0,1}* — X* such
that

A={g(x) [z €{0,1}"}.



Solution: We start by defining five simple helper machines:

e 1 writes 1’ to the input tape, moves the read/write head to right and stops.

0 writes ’0’ to the tape and stops.

Since the machines are simple, they are not presented here.

C empties the input tape, moves the head to the beginning of the tape and stops.
NEXT reads the input x € ¥* and replaces it with the lexicographic successor of x.

Cmp"J compares the contents of the input tapes i and j of a multi-tape Turing
machine and accepts if they are identical.

(i) [=] Let A C ¥* be a recursive language. Then there exists a Turing machine M 4:
MA = <Q7 27 Fv 67 405 Gacc; Qrej>

such that

Yw e ¥ :we L& (go,w) Fir, (Gace; @) ja
w ¢ L& (QO,U)) l_*lc\/IA (QIej7a)

We construct a machine M by combining M 4 with machines 1, 0, C' as follows:

50

computes the function y(w) = {

50

Sl®

50

If w € L, then M4 accepts w. After that M clears the tape and writes 1 to the tape.
Otherwise 0 is written. Since A is recursive, M4 halts always so also M halts and it

lLLbwe A
O,wé¢ A
[«<] Suppose that the function x(w) is recursive. Then there exists a Turing machine
M, that computes it. We can now construct a machine M as follows:

that is the characteristic function of A.

Now M accepts w whenever y(w) = 1 and rejects it when x(w) = 0, so M decides
the language A and A is recursive.

(ii) If A =0, then trivially A € RE and g(x) = 0 is its characteristic function.

NEXT?

M2

If there exists a function g that fulfills the conditions, then there exists a Turing
machine M, that computes g. We can trivially modify it so that it becomes a 2-tape
machine M ;*2 that computes g but stores the result in the second tape instead of
the first. We now construct a 3-tape machine as follows:

Cmp*3 @

0 O

O O

O

-0

&




The machine gets its input from its first tape and it stays untouched for the whole
computation. In each iteration M4 replaces the bit string & on the second tape by
its lexicographic successor y, computes g(y) and writes the output on the third tape.
Finally, the contents of tapes 1 and 3 are compared and if they match, the word is
accepted, otherwise the iteration proceeds into the next round.

[«<] Counsider the word w € A. Suppose that a recursive function g that fulfills the
conditions exists. Then w = g(x) for some & = x1xo---x, where n is finite. Since
each finite string has a finite number of predecessors in the lexicographic order,
NEXT eventually generates x, M, 92’3 generates w on the third tape and M4 accepts
the word. Thus, M4 recognizes the language A so A € RE.

[=] Next, suppose that A € RE — {(}. Then there exists a Turing machine M4 that
recognizes it. We now define a helper machine M, ; that simulates M4 for i steps.
The machine M4, accepts z if M4 accepts it using at most 7 steps, and rejects it
otherwise. We note that M4 ; always halts.

We construct the function g with the help of M4 ;. Every input  and bound ¢ is enco-
ded into bit strings using the function ¢(z,y) = 0°10Y. We define that g(c(z,y)) = =,
if M4, accepts x. We define that ¢’ : {0,1}* — {0,1}* is the function:

/
w) =
g'(w) xg, otherwise ,

{9:, w = 0710Y and M4 ,(x) accepts

where xg € A. Finally, g(z) = d(¢'(x)) where d is a function that maps a bit string
0% into the zth element of n ¥* in the lexicographic order. The value of ¢’ may be
computed in a finite time since M4 () always halts. Thus, ¢’ is recursive and so
also g is.

Note that while g always exists, it is not always possible to find it since in the general
case it is an undecidable problem to find an element xg € A that is needed for the
definition.



