
T-79.148 Spring 2003
Introduction to Theoretical Computer Science
Tutorial 11
Solutions to the demonstration problems

4. Problem: Prove that the class of recursively enumerable languages is closed under unions
and intersections. Why cannot one prove that the class is closed under complements in a
similar way as in the case of recursive languages, i.e. simply by interchanging the accepting
and rejecting states of the respective Turing machines?

Solutions: Let L1 and L2 be recursively enumerable languages (L1, L2 ∈ RE). Then,
there exists Turing machines M1 and M2 such that L(M1) = L1 and L(M2) = L2. We
can now form machines M∪ and M∩ that recognize the languages L1 ∪ L2 and L1 ∩ L2.

Union: The Turing machine M∪ is formed by composing the machines M1 and M2

as follows1:
M∪:

M1

M2

The machine is nondeterministic and it initially chooses whether it simulates M1

or M2. Since nondeterministic and deterministic Turing machines have the same
expressive power and M∪ recognizes L1 ∪ L2, L1 ∪ L2 ∈ RE.

Intersection: The machine M∩ is formed as follows:

M∩:

M1 M2

Given input x, machine M∩ first simulates the computation M1(x). If it halts (in the
accepting state qacc), M∩ continues with computation M2(x). If both computations
accept, x ∈ L1 ∩ L2 and M∩ accepts. Thus, L1 ∩ L2 ∈ RE. (To be precise, M∩ has
to store the input x somewhere so that it can be given to M2 after M1 has finished.)

Complementation: When a language L belongs to class RE −R (= recursively enu-
merable but not recursive), then a Turing machine M that recognizes it can reject a
word x in two different ways:

(a) M halts in state qrej; or
(b) M does not halt at all.

We now construct a machine M where the accepting and rejecting states are switc-
hed. Now also M rejects x if the computation does not halt, so x /∈ L(M) ∪ L(M),
so L(M) 6= L.
It can be proved (exercises 1d and 2b) that if L ∈ RE −R, then L /∈ RE.

5. Problem: Show that Turing machines that have only one internal state in addition to
their accepting and rejecting states are capable of recognising exactly the same languages

1Note that we again suppose that the machines have disjoint sets of states.



as the standard machines with arbitrarily many states. For simplicity, you may assume
that the simulating machines have multiple tapes and may also keep their tape heads
stationary (direction code ’S’) in a transition. How many internal states would be needed
to effect the simulation on single-tape machines?

Solution:

Let M be a Turing machine with n states. It is possible to simulate M with a single-state
two-tape machine M ′ if we add a symbol qi to the tape alphabet for each state qi of M .
The first tape of M ′ is used for the actual computation while the second tape only holds
the current state of the machine.

For example, the configuration (q2, abba) of M would be represented as: > q2 <

> a b b a <

If M has a transition δ(qi, a) = (qj , b,∆), then M ′ has a transition δ(q′0, (a, qi)) =
(q′0, (b, qj), (∆, S)), where q′0 is the sole state of M ′. The read/write head of the second
tape stays in place since otherwise the state information of the machine would be lost.

Formally the construction is as follows: Let M = (Q,Σ,Γ, δ, q0, qacc, qrej) be a standard-
issue Turing machine where Q = {q0, . . . , qn}. We construct a 2-tape machine M ′ =
({q′0},Σ,Γ ∪ {q0, . . . , qn}, δ′, q′0, q′acc, q′rej), where

δ′ ={(q′0, (a, qi), q′0, (b, qj), (∆, S)) | δ(qi, a) = (b, qj ,∆), qj /∈ {qacc, qrej}}
∪ {(q′0, (a, qi), q′, (b, q)) | δ(qi, a) = (b, q, (∆, S)), q ∈ {qacc, qrej}} .

It might seem that the same construction could be done also using a two-track machine.
However, this works only when M does not move its read/write head at all; as soon as
M moves its head, the state information is lost. If M has a convenient form, some of its
states may be removed by writing the state information in the end of the tape, but in the
worst case this also demands n states so M ′ is not necessarily smaller than M .

6. Problem:

(a) Prove that any decision problem that has only finitely many possible inputs is deci-
dable.

(b) Prove that the problem “Does the decimal expansion of π contain 100 consecutive
zeros?” is decidable. What does this result tell you about (i) the decimal expansion
of π, (ii) the notions of decidability and undecidability?

Solution

(a) If a decision problem has a finite number of possible inputs, it is possible to construct
a Turing machine that encodes all inputs and the correct answers into its states. Thus,
a problem is always decidable if there are only a finite number of inputs.

(b) The decision problem “Does the decimal expansion of π contain 100 consecutive
zeros?” has only one input, namely, π so by the preceding point it is decidable.
However, it is not easy to come up with the actual algorithm to compute the answer.
The natural way would be to generate the digits of π one by one and check whether
there are 100 consequtive zeroes. Unfortunately this only semidecides the problem;
if the answer is “no”, the machine never halts.



The problem has only one answer: either π has 100 consequtive zeroes or it does not
have. Thus, one of the following Turing machines decides it:

My

Mn

”Yes”

”No”

The machine My accepts the input and Mn rejects it. Unfortunately, we cannot know
which one of the machines is the correct one (though My seems to be more probable).
As we see, the concept of decidability is a very weak one. A problem may be deci-
dable even if we cannot solve it in practice, for example, if we do not have enough
computational resources.


