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Solutions to the demonstration problems

4. Problem: Define a relation ∼ on the set N× N by the rule:

(m,n) ∼ (p, q) ⇔ m + n = p + q.

Prove that this is an equivalence relation, and describe intuitively (“geometrically”) the
equivalence classes it determines.

Solution: The relation v ⊆ (N× N)× (N× N) is defined in the following way:

(m,n) v (p, q) ⇔ m + n = p + q

In other words, two pairs are equivalent when their sums are the same.

A relation is an equivalence relation when it is symmetric, transitive and reflexive.

i) The relation v is symmetric, if (m,n) v (p, q) always when (p, q) v (m,n). Because

m + n = p + q ⇔ p + q = m + n,

((p, q), (m,n)) is always in the relation when ((m,n), (p, q)) is. Thus the relation is
symmetric.

ii) The relation v is reflexive, if for all (m,n) ∈ N holds that (m,n) v (m,n). Since

m + n = m + n,

the condition is fulfilled.
iii) The relation v is transitive, if always when (m,n) v (p, q) and (p, q) v (k, l), also

(m,n) v (k, l).
Given

m + n = p + q ∧ p + q = k + l,

then
m + n = p + q = k + l ⇒ m + n = k + l,

and thus the relation is also transitive.

Because all three conditions hold, v is an equivalence relation. Below, the first elements
of the relation as a graph.
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From the figure it can be seen that the equivalence classes defined by the relation corre-
spond with the lines that are parallel to the line y = −x.
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5. Problem:Prove by induction that if X is a finite set of cardinality n = |X|, then its
power set P(X) is of cardinality |P(X)| = 2n.

Solution: Base case: X = ∅. Then P(∅) = {∅} and |P(∅)| = 1 = 20.

Induction hypothesis: we assume there exists a k ∈ N such that formula holds for all
n ≤ k.

Inductive step: let |X| = k + 1. Denote X = Y ∪ {x}. By the induction hypothesis
|P(Y )| = 2k. The set P(X) contains all elements of P(Y ) and the union of the elements
of P(Y ) with {x}. Thus we get |P(X)| = 2 · 2k = 2k+1.

6. Problem: Prove by induction that every partial order defined on a finite set S contains
at least one minimal element. Furthermore, provide examples showing that the minimal
element is not necessarily unique (i.e. there can be more than one), and that in an infinite
set S the claim does not necessarily hold.

Solution: We apply induction w.r.t. the size of S .

1◦ Base case: Consider the smallest possible non-empty set S1 = {a1}. This set has
only one possible partial order R1 = {(a1, a1)}. (A partial order is a reflexive,
anti-symmetric and transitive binary relation).
An element a ∈ S is a minimal element exactly when it does not appear on the right
side of any pair (except for the reflexive arc). More formally:

∀a, b ∈ S : (b, a) ∈ R ⇒ a = b,

In the partial order R1 the element a1 fulfils the condition above and it is thus the
minimal element.

2◦ Induction hypothesis: assume there exists a natural number n > 1 such that when
|S| < n, all partial orders formed from the elements of S have a minimal element.

3◦ Inductive step: let Sn = {a1, . . . , an} be a set with n elements and let Rn be any
partial order formed from the elements of Sn. Choose an arbitrary element ai (1 ≤
i ≤ n), remove it from Sn, and also remove all pair which refer to it from the relation:

S′
n = Sn − {ai}

R′
n = {(a, b) ∈ Rn | a 6= ai ∧ b 6= ai}

Now R′
n is also a partial order (this follows from the transitivity of Rn). Because the

set S′
n contains n − 1 elements (< n), R′

n has by the induction hypothesis at least
one minimal element, which we denote amin.
Consider Rn again. There are two possible cases:

i) If the arc (ai, amin) /∈ Rn, then amin is also the minimal element of Rn, because
the only difference between Rn and R′

n is the element ai and the arcs attached
it.

ii) If the arc (ai, amin) ∈ Rn, amin cannot be a minimal element. Because amin is
the minimal element of R′

n and because a partial order is always transitive, the
relation Rn cannot have the arc (b, ai) ∈ Rn, b 6= ai. Otherwise also the arc
(b, amin) ∈ R′

n, and not amin would be the minimal element of R′
n. Thus ai is a

minimal element of Rn and the proof is complete.

The induction step of the proof can be visualised by inspecting the the following partial
order (the reflexive and the transitive arcs have been left out for the sake of clarity):

R:

a2

a1

2



We remove element a1. We obtain the partial order R′:

R′:

a2

The minimal element of this partial order is a2. Because the original order does not contain
the arc (a1, a2), we see that a2 is also the minimal element of R. This corresponds to the
first case (i) of the inductive step. Case (ii) is obtained by removing a2.

A partial order defined over an infinite domain does not necessarily have a minimal ele-
ment. One example is the set of natural numbers Z and the order ≤.

A simple example of a partial order with several minimal elements is R = {(p, p), (q, q), (l, l), (q, l), (p, l)}.
Both p and q are minimal elements.
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