
T-79.148 Autumn 2003
Introduction to Theoretical Computer Science
Tutorial 12
Solutions to the demonstration problems

4 Problem:

Prove, without appealing to Rice’s theorem, that the following problem is undecidable:

Given a Turing machine M ; does M accept the empty string?

Solution:

First we define a language L = {M | M halts with the input ε}. Now, L is recursive
if and only if the decision problem in the exercise statement is decisive. Next we show
that the language H = {Mw | M halts with input w} can be recursively reduced to L
(denoted H ≤m L) so L is at least as difficult as H. Since H is not recursive, L may not
be recursive, either.

The concept of a recursive reduction is defined as follows: Let A ⊆ Σ∗ and B ⊆ Γ∗ be
languages. Now A ≤m B if and only if there exists a recursive functionf : Σ∗ → Γ∗ such
that

∀w ∈ Σ∗ : w ∈ A ⇔ f(w) ∈ B .

In this case we want to find a function f such that f(Mw) ∈ L if and only if Mw ∈ H. In
practice this means that we want to find a systematic way to construct a Turing machine
M ′ that halts with an empty input exactly when M halts with w = w1w2 · · ·wn.

Fortunately, this is an easy thing to do: M ′ starts by writing w to its tape and after that
it simulates M . Now M ′ stops only if M stops.

Formally, f can be defined as:

f(〈Q,Σ,Γ, δ, q0, qacc, qrej〉, w1w2 · · ·wn) = 〈Q′,Σ,Γ, δ′, q′0, qacc, qrej〉,

where

Q′ = Q ∪ {q′i | 0 ≤ i ≤ n}
δ′ = δ ∪ {〈q′i, ε, q′i+1, wi+1, R〉 | 0 ≤ i < n}

∪ {〈q′n, x, q′n, x, L〉 | x ∈ Γ ∪ {<}}
∪ {〈q′n, >, q0, >, R〉}

Since we add only a finite number of states and transitions to M (n has to be finite), f
is trivially recursive.

5. Problem: Prove the following connections between recursive functions and languages:

(i) A language A ⊆ Σ∗ is recursive (“Turing-decidable”), if and only its characteristic
function

χA : Σ∗ → {0, 1}, χA(x) =
{

1, if x ∈ A;
0, if x /∈ A

is a recursive (“Turing-computable”) function.

(ii) A language A ⊆ Σ∗ is recursively enumerable (“semidecidable”, “Turing-recognisable”),
if and only if either A = ∅ or there exists a recursive function g : {0, 1}∗ → Σ∗ such
that

A = {g(x) | x ∈ {0, 1}∗}.

Solution: We start by defining five simple helper machines:

• 1 writes ’1’ to the input tape, moves the read/write head to right and stops.
• 0 writes ’0’ to the tape and stops.
• C empties the input tape, moves the head to the beginning of the tape and stops.
• NEXT reads the input x ∈ Σ∗ and replaces it with the lexicographic successor of x.
• Cmpi,j compares the contents of the input tapes i and j of a multi-tape Turing

machine and accepts if they are identical.

Since the machines are simple, they are not presented here.

(i) [⇒] Let A ⊆ Σ∗ be a recursive language. Then there exists a Turing machine MA:

MA = 〈Q, Σ,Γ, δ, q0, qacc, qrej〉

such that
∀w ∈ Σ∗ : w ∈ L ⇔ (q0, w) `∗MA

(qacc, α) ja
w /∈ L ⇔ (q0, w) `∗MA

(qrej, α)

We construct a machine M by combining MA with machines 1, 0, C as follows:

q′0

MA

C

C

1

0

If w ∈ L, then MA accepts w. After that M clears the tape and writes 1 to the tape.
Otherwise 0 is written. Since A is recursive, MA halts always so also M halts and it

computes the function χ(w) =

{
1, w ∈ A

0, w /∈ A
that is the characteristic function of A.

[⇐] Suppose that the function χ(w) is recursive. Then there exists a Turing machine
Mχ that computes it. We can now construct a machine M as follows:

Mχ x, x/L
1, 1/R

0, 0/R

Now M accepts w whenever χ(w) = 1 and rejects it when χ(w) = 0, so M decides
the language A and A is recursive.

(ii) If A = ∅, then trivially A ∈ RE and g(x) = 0 is its characteristic function.
If there exists a function g that fulfills the conditions, then there exists a Turing
machine Mg that computes g. We can trivially modify it so that it becomes a 2-tape
machine M1,2

g that computes g but stores the result in the second tape instead of
the first. We now construct a 3-tape machine as follows:

NEXT2 M2,3
g

Cmp1,3

The machine gets its input from its first tape and it stays untouched for the whole
computation. In each iteration MA replaces the bit string x on the second tape by
its lexicographic successor y, computes g(y) and writes the output on the third tape.
Finally, the contents of tapes 1 and 3 are compared and if they match, the word is
accepted, otherwise the iteration proceeds into the next round.
[⇐] Consider the word w ∈ A. Suppose that a recursive function g that fulfills the
conditions exists. Then w = g(x) for some x = x1x2 · · ·xn where n is finite. Since
each finite string has a finite number of predecessors in the lexicographic order,
NEXT eventually generates x, M2,3

g generates w on the third tape and MA accepts
the word. Thus, MA recognizes the language A so A ∈ RE.
[⇒] Next, suppose that A ∈ RE−{∅}. Then there exists a Turing machine MA that
recognizes it. We now define a helper machine MA,i that simulates MA for i steps.
The machine MA,i accepts x if MA accepts it using at most i steps, and rejects it
otherwise. We note that MA,i always halts.
We construct the function g with the help of MA,i. Every input x and bound i is enco-
ded into bit strings using the function c(x, y) = 0x10y. We define that g(c(x, y)) = x,
if MA,y accepts x. We define that g′ : {0, 1}∗ → {0, 1}∗ is the function:

g′(w) =

{
x, w = 0x10y and MA,y(x) accepts
x0, otherwise ,

where x0 ∈ A. Finally, g(x) = d(g′(x)) where d is a function that maps a bit string
0x into the xth element of n Σ∗ in the lexicographic order. The value of g′ may be
computed in a finite time since MA,y(x) always halts. Thus, g′ is recursive and so
also g is.
Note that while g always exists, it is not always possible to find it since in the general
case it is an undecidable problem to find an element x0 ∈ A that is needed for the
definition.

6. Problem: Show that all context-sensitive languages can be recognised by linear-bounded
automata. (Make use of the fact that in applying the grammar’s production rules, the
length of the sentential form under consideration can never decrease, except in the special
case of the empty string.) Deduce from this result the fact that all context-sensitive
languages are recursive.

Solution:

By definition, all rules of a context-sensitive languages are of the form where the right
side is at least as long as the left side (apart from the possible rule S → ε).

A context-sensitive language can be recognized by a linear-bounded automaton that non-
deterministically moves into some place of the input and applies one of the rules of the
grammar from right to left. Since the string may only become shorter, no new space is
needed. Also, if symbols are removed, then it is trivial to construct a machine that remo-
ves all extra space. If we have only the initial symbol S on the tape at the end, the word
is accepted.

Consider the following context-sensitive grammar:

S → aA | bB
aA → abB | ab

bB → baA | ba

A linear-bounded automaton recognizing this language would work as follows for the input

abab:

> a b a b < `∗ > a b a A <

`∗ > a b B <

`∗ > a A <

`∗ > S <

The machine described above is not total, since it is possible that it ends in an infinite
loop. For example, if the grammar in question is:

S → ε

ab → ba

ba → ab,

then all computations with a non-empty input fail to terminate.

We can fix the problem by noting that since the length of the tape may not increase, the
number of possible configurations is finite. This number is of the magnitude q× n× |Γ|n,
where q is the number of states, n the length of input, and |Γ| the size of the tape alphabet.

We can totalize the machine by adding a counter for it that counts the number of steps
taken. The easiest way to do this is to have a two-track machine that keeps the counter
on the second track encoded as a binary number. This number is then increased with each
step of the original machine. When the counter reaches the limit, we can reject the word
as the machine is in a loop.

Finally, we have to check that we can implement the counter without breaking the linear
space bound. To encode a number q× n× |Γ|n we need k = log2(q) + log2(n) + n log(|Γ|)
bits that is linear with respect to n. Even though k > n, we can squeeze it into the
available space by encoding it in a suitable base.

7. Problem:

Show that every language generated by an unrestricted grammar can also be generated
by a grammar where no terminal symbols occur on the left hand side of any production.

Solution: We can systematically construct a grammar G′ that fulfills the conditions and
generates the same language as a given grammar G by adding a new nonterminal Aa for
each symbol a ∈ Σ, replacing a by Aa in each rule of the grammar, and finally adding a
rule Aa → a.

Formally: Let G be an unrestricter grammar G = (V,Σ, P, S). We construct a grammar
G′ = (V ′,Σ, P ′, S′), where

V ′ = V ∪ {Aa | a ∈ Σ}

Each rule r = x1 · · ·xn → xn+1 · · ·xn+m of G where xi ∈ V is transformed into:

c(r) = y1 · · · yn → yn+1 · · · yn+m

where

yi =

{
xi, xi ∈ V − Σ
Axi

, xi ∈ Σ .

Now the set of rules P ′ can be defined as follows:

P ′ = {c(r) | r ∈ P} ∪ {Aa → a | a ∈ Σ} .

Consider the grammar from the Exercise 4:

S → aA | bB
aA → abB | ab

bB → baA | ba

By using the construction, we get a grammar:

S → AaA | AbB

AaA → AaAbB | AaAb

AbB → AbAaA | AbAa

Aa → a

Ab → b

8. Problem:

Show that every context-sensitive grammar can be put in a normal form where the pro-
ductions are of the form S → ε or αAβ → αωβ, where A is a nonterminal symbol and
ω 6= ε. (S denotes here the start symbol of the grammar.)

Solution:

In normalizing the grammar we have three steps:

i) Remove the initial symbol S from the right side of rules.

ii) Remove all terminal symbols from the left sides of the rules.

iii) Fix all rules that are of a wrong form.

The three steps are defined as follows:

i) If S occurs in the right side of a rule, we add a new initial symbol S′ and a rule
S′ → S to the grammar.

ii) The terminal symbols are removed using the method presented in solution of Exercise
5.

iii) Each incorrect rule
X1 · · ·Xn → Y1 · · ·Ym ,

where m ≥ n we add n−1 new nonterminals (Z1, . . . , Zn−1) and the rule is replaced
by the set of rules:

Xn−1Xn → Z1Xn

Z1Xn → Z1Yn · · ·Ym

Xn−2Z1 → Z2Z1

Z2Z1 → Z2Yn−1

...
Zn−1Zn−2 → Zn−1Y2

Zn−1Y2 → Y1Y2

For example, let us consider the rule

ABBA → BAABA

As n = 4 we need three new nonterminals: Z1, Z2, and Z3. The corresponding set of rules
is:

BA → Z1A

Z1A → Z1BA

BZ1 → Z2Z1

Z2Z1 → Z2A

AZ2 → Z3Z2

Z3Z2 → Z3A

Z3A → BA .

Now the derivation of the original rule becomes the following derivation:

ABBA ⇒ ABZ1A ⇒ ABZ1BA ⇒ AZ2Z1BA ⇒ AZ2ABA

⇒ Z3Z2ABA ⇒ Z3AABA ⇒ BAABA .

