
T-79.148 Autumn 2003
Introduction to Theoretical Computer Science
Tutorial 10
Solutions to the demonstration problems

4. Problem: Extend the notion of a Turing machine by providing the possibility of a two-way
infinite tape. Show that nevertheless such machines recognize exactly the same languages
as the standard machines whose tape is only one-way infinite.

Solution: A Turing machine with a two-way infinite tape works otherwise in a same way
than a standard machine except that the position of the tape start symbol (>) is not fixed
and it can move in a same way than the end symbol (<). The tape positions are indexed
by the set Z of integers where 0 denotes the initial position of >.

We can simulate such a Turing machine by a two-track one-way Turing machine. Concep-
tually, we divide the tape into two parts: upper and lower. The upper part holds the
two-way tape cells i ≥ 0 and the lower part cells i < 0. For example, a two-way tape:

ε-3 >-2 b-1 a
0

b
1

a
2

ε
4

<
3

· · ·· · ·

is expressed as a one-way tape:

>
a

0

b-1

b
1

>′
-2

a
2

ε-3

<′
3

ε-4

· · ·
· · ·

In practice the construction of two tracks is done by replacing the alphabet Σ by a new
alphabet Σ′ = (Σ∪{<

′, >
′})× (Σ∪{<

′, >
′}). Each symbol of Σ′ thus denotes two symbols

of Σ. The symbols {<
′, >

′} are new symbols that denote the start and end symbols of the
original tape. So, the above example is expressed as:

> 〈a, b〉 〈b, >′〉 〈a, ε〉 〈<′, ε〉 <

We still need a way to decide which tape-half is used. The easiest way to do this is to
define a mirror image state q′ for each state q. When the machine is in state q, it examines
only the upper track when it decides what move to take next (tape head is on right side
of the tape). Similarily, in state q′ it examines only the lower symbol (tape head is on the
left side). Since the lower tape is in a reversed order, all tape head moving instructions
have to be also reversed.

The formal definition of this construction is presented in an appendix.

5. Problem: Show that Turing machines whose tape alphabet contains at most two symbols
in addition to the input symbols are capable of recognising exactly the same languages as
the standard machines.

Solution:

Let M = (Q,Σ,Γ, δ, q0, qacc, qrej) be a Turing machine such that |Γ−Σ| > 2. We want to
construct a machine M ′ such that Γ′ = {0, 1}. Let Γ = {a1, . . . , an}. The basic idea of the
construction is to identify the elements of Γ with the integers { 1, . . ., n } and represent
them as k-bit integers, where k = dlog2(|Γ|). In other words, each element of M ’s tape

alphabet is replaced with k bits. For example, suppose that N = 3 and the tape has the
input a1a2a3. In this case the encoding is:

> a1 a2 a3 < =⇒ > 0 1 1 0 1 1 <

The transition function of M ′ is defined so that for each step of M , M ′ does first k steps
where it first decides what symbol of Γ is encoded in the tape cells to the right of the
read/write head. This can be done using a Turing machine that reads k symbols from
the tape while moving its head to right at each step and that remembers the input in its
states. For example, if k = 3, then the following Turing machine may be used:

ε

000

001

010

011

100

101

110

111

00

01

10

11

0

1

0/0, R

0/0, R

0/0, R

0/0, R

0/0, R

0/0, R

0/0, R1/1, R

1/1, R

1/1, R

1/1, R

1/1, R

1/1, R

1/1, R

If the machine ends in the state 011, then the input symbol is a3 since 0112 = 310. The
symbol that is written to the tape is similarily done using k different transitions. Finally,
the tape head is moved k steps to the correct direction.

Appendix: the formalisation of solution 4

Let M = (Q, Σ,Γ, δ, q0, qacc, qrej) be a two-way tape Turing machine. Define a standard
Turing machine M ′ as follows:

M ′ =(Q′,Σ′,Γ′, δ′, q0, qacc, qrej)
Q′ =Q ∪ {q′ | q ∈ Q}
Σ′ =(Σ ∪ {<

′, >
′})× (Σ ∪ {<

′, >
′})

Γ′ =(Γ ∪ {<
′, >

′})× (Γ ∪ {<
′, >

′})

The transition function δ′ is defined as follows:

δ′ = {(q1, 〈a, γ〉, q2, 〈b, γ〉,∆) | (q1, a, q2, b,∆) ∈ δ, γ ∈ Γ′}
∪ {(q1, 〈σ′, γ〉, q2, 〈b, γ〉,∆) | (q1, σ, q2, b,∆) ∈ δ, γ ∈ Γ′, σ ∈ {<, >}}
∪ {(q′

1, 〈γ, a〉, q′
2, 〈γ, b〉,∆) | (q1, a, q2, b,∆) ∈ δ, γ ∈ Γ′}

∪ {(q′, 〈γ, a〉, qend, 〈γ, b〉,∆) | (q, a, qend, b,∆) ∈ δ, qend ∈ {qacc, qrej}, γ ∈ Γ′}
∪ {(q′

1, 〈γ, σ′〉, q′
2, 〈γ, b〉,∆) | (q1, σ, q2, b,∆) ∈ δ, γ ∈ Γ′, σ ∈ {<, >}}

∪ {(q, >, q′, >, R), (q′, >, q, >, R) | q ∈ Q},

where L = R, R = L, < = > and > = <.

