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4. Problem: Simplify the following regular expressions (i.e., design simpler expres-
sions describing the same languages):

1. (∅∗ ∪ a)(a∗)∗(b ∪ a)b∗

2. (a ∪ b)∗ ∪ ∅ ∪ (a ∪ b)b∗a∗

3. a(b∗ ∪ a∗)(a∗b∗)∗

Solution:

(a)

(∅∗ ∪ a)(a∗)∗(b ∪ a)b∗ =(ε ∪ a)(a∗)∗(b ∪ a)b∗

=(ε ∪ a)a∗(b ∪ a)b∗

=a∗(b ∪ a)b∗

(b)
(a ∪ b)∗ ∪ ∅ ∪ (a ∪ b)b∗a∗ = (a ∪ b)∗

The result can be immediately seen from the fact that the first subexpression
of the union already generates all words in Σ∗.

(c)
a(b∗ ∪ a∗)(a∗b∗)∗ = a(a ∪ b)∗

Here we note that the subexpression R2 = (a∗b∗)∗ generates all strings that
can be generated by R1 = (b∗ ∪ a∗), so R1 may be removed.

5. Problem: Determine whether the regular expressions r1 = b∗a(a∗b∗)∗ and r2 =
(a ∪ b)∗a(a ∪ b)∗ describe the same language, by constructing the (minimal)
finite state machines corresponding to them.

Solution: For each regular language there exists a unique1 minimal deterministic
finite automaton. Thus, we can check the equivalence of two regular expressions
by generating their corresponding minimal automata, and then checking whether
they are identical.

We first construct the automaton corresponding to the regular expression r1:
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Next, we remove the ε-transitions from the automaton:
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Now we notice that the automaton is already deterministic, so we may directly
skip to the minimization phase. The minimization algorithm identify states 1 and
2 together, as well as states 6, 01, and 14. The resulting minimal automaton Mr1

is thus:
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Next we do the same construction for r2:
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(a ∪ b)∗a(a ∪ b)∗
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Remove ε-transitions:
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We note that this automaton may be simplified by combining all accepting
states into one state:
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Next, we determinize this automaton:
Det. state Nondet. states a b

A {1} {4, 9} {6}
B {4, 9} {4, 9} {6, 9} ×
C {6} {4, 9} {6}
D {6, 9} {4, 9} {6, 9} ×
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When we minimize this automaton, the result is:
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Because both r1 and r2 lead to the same minimal automaton, the languages
L(r1) and L(r2) are equivalent.



6. Problem: Prove that if L is a regular language, then so is L′ = {xy | x ∈ L, y /∈
L}.
Solution: The easiest way to prove that a language is regular is to use the closure
properties of regular languages; the class of regular languages is closed under the
union, concatenation, Kleene star, complementation, and the intersection.

In the language we are given a regular language L and we define a new language
by it:

L′ = {xy | x ∈ L ja y /∈ L}

The language L′ is the concatenation of languages L and its complement L (y /∈
L ⇒ y ∈ L). Since regular languages are closed under complementation and
concatenation, L′ is regular.

We may also construct a finite-state automaton that decides the language L′.
Since L is regular, there is some deterministic automaton M that decides it. We
now construct an automaton M that is otherwise similar to M except that all
accepting states are made rejecting and vice verse. Now M accepts the comple-
ment of L. We combine these two machines into a new non-deterministic auto-
maton M ′ by adding a non-deterministic e-transition from all accepting states of
M to the initial state of M . Now M ′ decides L′ so L′ is regular.


