Introduction to Theoretical Computer Science

Tutorial 2
Solutions to the demonstration problems
4. Problem: Show that any alphabet Σ with at least two symbols is comparable to the binary alphabet $\Gamma=\{0,1\}$, in the sense that strings over Σ can be easily encoded into strings over Γ and vice versa. How much can the length of a string change in your encoding? (I.e., if the length of a string $w \in \Sigma^{*}$ is $|w|=n$ symbols, what is the length of the corresponding string $w^{\prime} \in \Gamma^{*}$?) Could you design a similar encoding if the target alphabet consisted of only one symbol, e.g. $\Gamma=\{1\}$?
Solution: Let Σ be some alphabet with k symbols, $k>1$. The strings of Σ can be coded as strings of $\Gamma=\{0,1\}$ in the following manner.

- Set the symbols of Σ to equal integers $\{1, \ldots, k\}$.
- These numbers (the symbols of Σ) can be represented with binary numbers of length $\left\lceil\log _{2} k\right\rceil$.
- Every string in Σ^{*} can therefore be represented as a string of Γ by replacing the symbols of Σ with their binary encoding.

The decoding from Γ^{*} to Σ^{*} can be done in a similar fashion by taking strings of length $\left\lceil\log _{2} k\right\rceil$ from a string and interpreting them as symbols of Σ.
If the length of a string $w \in \Sigma^{*}$ is $|w|=n$ symbols, the length of its counterpart $w^{\prime} \in \Gamma^{*}$ is $\left|w^{\prime}\right|=n \cdot\left\lceil\log _{2} k\right\rceil$. This is because the number of symbols needed to encode any symbol in Σ is $\left\lceil\log _{2} k\right\rceil$.
For an example, consider the alphabet $\Sigma=\{a, b, c, d, e, f\}$ and the string aacfd. As $|\Sigma|=6,\left\lceil\log _{2} 6\right\rceil=\lceil 2.58\rceil=3$ bits are needed to represent the symbols of Σ. One possible encoding is

$$
\begin{array}{rl}
a \mapsto 001 & \\
d \mapsto 100 \\
b \mapsto 010 & e \mapsto 101 \\
c \mapsto 011 & f \mapsto 110
\end{array}
$$

With this encoding, the representation of aacfd is 001001011110100.
A similar coding scheme cannot be constructed if $\Gamma=\{1\}$. A unary presentation of the form $1 \mapsto 1,2 \mapsto 11,3 \mapsto 111, \ldots$ can of course be defined, but the code obtained in this way can no longer be decoded unambiguously. For an example, the encodings of 111 , 12,21 and 3 are all the string 111.
5. Problem: Prove that the Cartesian product $\mathbb{N} \times \mathbb{N}$ is countably infinite. (Hint: Think of the pairs $(m, n) \in \mathbb{N} \times \mathbb{N}$ as embedded in the Euclidean (x, y) plane \mathbb{R}^{2}. Enumerate the pairs by diagonals parallel to the line $y=-x$.) Conclude from this result and the result of Problem 3 that also the set \mathbb{Q} of rational numbers is countably infinite.

Solution: A set S is countably infinite, if there exists a bijective mapping $f: \mathbb{N} \rightarrow S$. By intuition, all members of the set S can be assigned a unambiguous running number.
The members $(x, y) \in \mathbb{N} \times \mathbb{N}$ of the set $\mathbb{N} \times \mathbb{N}$ can be assigned a number as shown in the following figure.

The idea is to arrange all pairs of numbers on diagonals parallel to the line $y=-x$ and enumerate the lines by member one at a time, starting from the shortest one. Here the enumeration can not be done parallel to the x-axis; when doing this all indices would be used to enumerate only the y-axis and no pair $(x, y), y>0$ would ever be reached.

The enumerating scheme abowe can be defined as follows:

$$
f(x, y)=x+\sum_{k=1}^{x+y} k=x+\frac{(x+y)(x+y+1)}{2}
$$

For an example, $f(3,1)=13$, that is, the running number of pair $(3,1)$ is 13 . The function $f(x, y)$ is a bijection; for every running number there exists a unambiguous pair of numbers. Calculating a coordinate from a given index is relatively difficult, and is discussed in the appendix at the end of these solutions.

The set of positive rational numbers \mathbb{Q}^{+}can be presented as a pair of numbers $\mathbb{N} \times \mathbb{N}$ by $(x, y) \equiv \frac{x}{y}, y \neq 0$. This is a proper subset of the countably infinite set $\mathbb{N} \times \mathbb{N}$. By Problem $3, \mathbb{Q}^{+}$is either finite or countably infinite. If \mathbb{Q}^{+}was finite, there should exists some rational number $\frac{x}{y}, x \in \mathbb{N}, y \in \mathbb{N}, y \neq 0$, that would have the greatest running number $n<\infty$ (in the enumeration of \mathbb{Q}). This cannot be, because using the figure above one could always find a rational number that would have a running numberu $n^{\prime}>n$. Hence, we have contradiction with the assumption that \mathbb{Q}^{+}is finite. Therefore \mathbb{Q}^{+}is countably infinite. By the same argument, the set \mathbb{Q}^{-}:

$$
\mathbb{Q}^{-}=\left\{(-x, y) \mid(x, y) \in \mathbb{Q}^{+}\right\}
$$

is countably infinite. Thus, the set $\mathbb{Q}=\mathbb{Q}^{+} \cup \mathbb{Q}^{-}$is the union of two countably infinite sets, and it too is countably infinite.
6. Problem: Let S be an arbitrary nonempty set.
(a) Give some injective (i.e. one-to-one) function $f: S \rightarrow \mathcal{P}(S)$.
(b) Prove that there cannot exist an injective function $g: \mathcal{P}(S) \rightarrow S$. (Hint: Assume that such a function g existed. Consider the set $R=\left\{s \in S \mid s \notin g^{-1}(s)\right\}$, and denote $r=g(R)$. Is it then the case that $r \in R$?)

Observe, as a consequence of item (b), that the power set $\mathcal{P}(S)$ of any countably infinite set S is uncountable.
Solution: Let $S \neq \emptyset$ be an arbitrary set.
(a) Define function $f: S \rightarrow \mathcal{P}(S)$ so that f is one-to-one (i.e. f is an injection). There exists $\{a\} \in \mathcal{P}(S)$ for all $a \in S$. Furthermore, if $a \neq b,\{a\} \neq\{b\}$ holds, so mapping $f: S \rightarrow \mathcal{P}(S), f(a)=\{a\}$ is such an injection we were looking for.
Presented below is the mapping f for $S=\{a, b, c\}$:

(b) Assume that there exists an injection $g: \mathcal{P}(S) \rightarrow S$. First define a subset $S^{\prime} \subseteq S$ such that:

$$
S^{\prime}=\{a \in S \mid \text { there exists a set } A \subseteq S \text { such that } g(A)=a\}
$$

We see that S^{\prime} cannot be empty as $|\mathcal{P}(S)|>0$ for all sets S.
Consider the set $R=\left\{s \in S^{\prime} \mid s \notin g^{-1}(s)\right\}$, and denote $r=g(R)$. If $r \in R$ we have that $r \notin g^{-1}(r)$. However,

$$
g^{-1}(r)=g^{-1}(g(R))=R
$$

so we have a contradiction. On the other hand, if $r \notin R$, it holds that $r \in g^{-1}(r)=$ $g^{-1}(g(R))=R$, another contradiction. Thus, it is not possible to define an injective function $g: \mathcal{P}(S) \rightarrow S$.
(The definition of S^{\prime} above is necessary because otherwise the inverse g^{-1} would not necessarily exist in the definition of the set R.)

On the basis of (b) an injection $g: \mathcal{P}(S) \rightarrow S$ cannot be formed. Moreover, if S is countably infinite, there exists a bijection $f: \mathbb{N} \rightarrow S$. For $\mathcal{P}(S)$ to be countable, there should exists a bijection $f^{\prime}: \mathbb{N} \rightarrow \mathcal{P}(S)$. Assume that such a bijection f^{\prime} exists. Then mapping $g \circ f^{\prime-1}: \mathcal{P}(S) \rightarrow S$ a bijection (one-to-one and onto). This is contradictory with the fact that there exists no injection $\mathcal{P}(S) \rightarrow S$. Therefore $\mathcal{P}(S)$ is uncountable.

Appendix: Counting coordinate pairs from running numbers in problem 4.

Given a running number m one wishes to calculate such coordinates x and y that

$$
\begin{equation*}
x+\frac{(x+y)(x+y+1)}{2}=m \tag{1}
\end{equation*}
$$

Denote $z=x+y$. Then (1) equals to:

$$
\begin{equation*}
z-y+\frac{z(z+1)}{2}=m . \tag{2}
\end{equation*}
$$

As $z-y \geq 0$,

$$
\begin{align*}
\frac{z(z+1)}{2} & \leq m \tag{3}\\
& z \leq \frac{-1 \pm \sqrt{1+8 m}}{2} \tag{4}
\end{align*}
$$

As $z \in \mathbb{N}$ ja $m, x, y \geq 0$, it can be observed that:

$$
\begin{equation*}
z=\left\lfloor\frac{-1+\sqrt{1+8 m}}{2}\right\rfloor \tag{5}
\end{equation*}
$$

Now both x and y can be calculated usind indexing function f :

$$
\begin{align*}
& x=m-f(0, z) \tag{6}\\
& y=z-x
\end{align*}
$$

Here $f(0, z)$ gives the running number of the first member of the diagonal (x, y). For an example, let us calculate the pair that corresponds to the running number $m=13$:

$$
\begin{aligned}
& z=\left\lfloor\frac{-1+\sqrt{105}}{2}\right\rfloor=\lfloor 4.62\rfloor=4 \\
& x=13-f(0,4)=13-10=3 \\
& y=4-3=1
\end{aligned}
$$

As a result the pair $(3,1)$ is obtained.

