## T-79.148 Introduction to Theoretical Computer Science Tutorial 2 Solutions to the demonstration problems

4. Problem: Show that any alphabet Σ with at least two symbols is comparable to the binary alphabet Γ = {0, 1}, in the sense that strings over Σ can be easily encoded into strings over Γ and vice versa. How much can the length of a string change in your encoding? (I.e., if the length of a string w ∈ Σ\* is |w| = n symbols, what is the length of the corresponding string w' ∈ Γ\*?) Could you design a similar encoding if the target alphabet consisted of only one symbol, e.g. Γ = {1}?

**Solution:** Let  $\Sigma$  be some alphabet with k symbols, k > 1. The strings of  $\Sigma$  can be coded as strings of  $\Gamma = \{0, 1\}$  in the following manner.

- Set the symbols of  $\Sigma$  to equal integers  $\{1, \ldots, k\}$ .
- These numbers (the symbols of  $\Sigma$ ) can be represented with binary numbers of length  $\lceil \log_2 k \rceil$ .
- Every string in  $\Sigma^*$  can therefore be represented as a string of  $\Gamma$  by replacing the symbols of  $\Sigma$  with their binary encoding.

The decoding from  $\Gamma^*$  to  $\Sigma^*$  can be done in a similar fashion by taking strings of length  $\lceil \log_2 k \rceil$  from a string and interpreting them as symbols of  $\Sigma$ .

If the length of a string  $w \in \Sigma^*$  is |w| = n symbols, the length of its counterpart  $w' \in \Gamma^*$  is  $|w'| = n \cdot \lceil \log_2 k \rceil$ . This is because the number of symbols needed to encode any symbol in  $\Sigma$  is  $\lceil \log_2 k \rceil$ .

For an example, consider the alphabet  $\Sigma = \{a, b, c, d, e, f\}$  and the string *aacfd*. As  $|\Sigma| = 6$ ,  $\lceil \log_2 6 \rceil = \lceil 2.58 \rceil = 3$  bits are needed to represent the symbols of  $\Sigma$ . One possible encoding is

$$\begin{array}{ll} a \mapsto 001 & d \mapsto 100 \\ b \mapsto 010 & e \mapsto 101 \\ c \mapsto 011 & f \mapsto 110 \end{array}$$

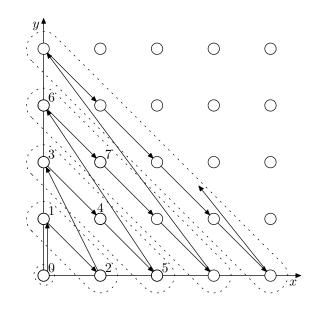
With this encoding, the representation of aacfd is 001001011110100.

A similar coding scheme cannot be constructed if  $\Gamma = \{1\}$ . A unary presentation of the form  $1 \mapsto 1, 2 \mapsto 11, 3 \mapsto 111, \ldots$  can of course be defined, but the code obtained in this way can no longer be decoded unambiguously. For an example, the encodings of 1 1 1, 1 2, 2 1 and 3 are all the string 111.

5. **Problem:** Prove that the Cartesian product  $\mathbb{N} \times \mathbb{N}$  is countably infinite. (*Hint:* Think of the pairs  $(m, n) \in \mathbb{N} \times \mathbb{N}$  as embedded in the Euclidean (x, y) plane  $\mathbb{R}^2$ . Enumerate the pairs by diagonals parallel to the line y = -x.) Conclude from this result and the result of Problem 3 that also the set  $\mathbb{Q}$  of rational numbers is countably infinite.

**Solution:** A set S is countably infinite, if there exists a bijective mapping  $f : \mathbb{N} \to S$ . By intuition, all members of the set S can be assigned a unambiguous running number.

The members  $(x, y) \in \mathbb{N} \times \mathbb{N}$  of the set  $\mathbb{N} \times \mathbb{N}$  can be assigned a number as shown in the following figure.



The idea is to arrange all pairs of numbers on diagonals parallel to the line y = -x and enumerate the lines by member one at a time, starting from the shortest one. Here the enumeration can not be done parallel to the x-axis; when doing this all indices would be used to enumerate only the y-axis and no pair (x, y), y > 0 would ever be reached.

The enumerating scheme above can be defined as follows:

$$f(x,y) = x + \sum_{k=1}^{x+y} k = x + \frac{(x+y)(x+y+1)}{2}$$

For an example, f(3,1) = 13, that is, the running number of pair (3,1) is 13. The function f(x, y) is a bijection; for every running number there exists a unambiguous pair of numbers. Calculating a coordinate from a given index is relatively difficult, and is discussed in the appendix at the end of these solutions.

The set of positive rational numbers  $\mathbb{Q}^+$  can be presented as a pair of numbers  $\mathbb{N} \times \mathbb{N}$  by  $(x, y) \equiv \frac{x}{y}, y \neq 0$ . This is a proper subset of the countably infinite set  $\mathbb{N} \times \mathbb{N}$ . By Problem 3,  $\mathbb{Q}^+$  is either finite or countably infinite. If  $\mathbb{Q}^+$  was finite, there should exists some rational number  $\frac{x}{y}, x \in \mathbb{N}, y \in \mathbb{N}, y \neq 0$ , that would have the greatest running number  $n < \infty$  (in the enumeration of  $\mathbb{Q}$ ). This cannot be, because using the figure above one could always find a rational number that would have a running numberu n' > n. Hence, we have contradiction with the assumption that  $\mathbb{Q}^+$  is finite. Therefore  $\mathbb{Q}^+$  is countably infinite. By the same argument, the set  $\mathbb{Q}^-$ :

$$\mathbb{Q}^- = \{(-x, y) \mid (x, y) \in \mathbb{Q}^+\}$$

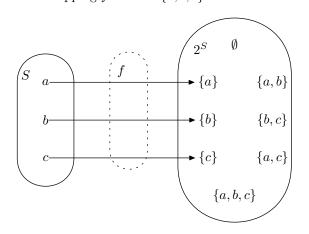
is countably infinite. Thus, the set  $\mathbb{Q} = \mathbb{Q}^+ \cup \mathbb{Q}^-$  is the union of two countably infinite sets, and it too is countably infinite.

- 6. **Problem**: Let S be an arbitrary nonempty set.
  - (a) Give some injective (i.e. one-to-one) function  $f: S \to \mathcal{P}(S)$ .
  - (b) Prove that there cannot exist an injective function  $g: \mathcal{P}(S) \to S$ . (*Hint:* Assume that such a function g existed. Consider the set  $R = \{s \in S \mid s \notin g^{-1}(s)\}$ , and denote r = g(R). Is it then the case that  $r \in R$ ?)

Observe, as a consequence of item (b), that the power set  $\mathcal{P}(S)$  of any countably infinite set S is uncountable.

**Solution:** Let  $S \neq \emptyset$  be an arbitrary set.

(a) Define function f: S → P(S) so that f is one-to-one (i.e. f is an injection). There exists {a} ∈ P(S) for all a ∈ S. Furthermore, if a ≠ b, {a} ≠ {b} holds, so mapping f : S → P(S), f(a) = {a} is such an injection we were looking for. Presented below is the mapping f for S = {a, b, c}:



(b) Assume that there exists an injection  $g: \mathcal{P}(S) \to S$ . First define a subset  $S' \subseteq S$  such that:

 $S' = \{a \in S \mid \text{ there exists a set } A \subseteq S \text{ such that } g(A) = a\}$ .

We see that S' cannot be empty as  $|\mathcal{P}(S)| > 0$  for all sets S.

Consider the set  $R = \{s \in S' \mid s \notin g^{-1}(s)\}$ , and denote r = g(R). If  $r \in R$  we have that  $r \notin g^{-1}(r)$ . However,

$$g^{-1}(r) = g^{-1}(g(R)) = R$$

so we have a contradiction. On the other hand, if  $r \notin R$ , it holds that  $r \in g^{-1}(r) = g^{-1}(g(R)) = R$ , another contradiction. Thus, it is not possible to define an injective function  $g : \mathcal{P}(S) \to S$ .

(The definition of S' above is necessary because otherwise the inverse  $g^{-1}$  would not necessarily exist in the definition of the set R.)

On the basis of (b) an injection  $g: \mathcal{P}(S) \to S$  cannot be formed. Moreover, if S is countably infinite, there exists a bijection  $f: \mathbb{N} \to S$ . For  $\mathcal{P}(S)$  to be countable, there should exists a bijection  $f': \mathbb{N} \to \mathcal{P}(S)$ . Assume that such a bijection f' exists. Then mapping  $g \circ f'^{-1}: \mathcal{P}(S) \to S$  a bijection (one-to-one and onto). This is contradictory with the fact that there exists no injection  $\mathcal{P}(S) \to S$ . Therefore  $\mathcal{P}(S)$  is uncountable.

## Appendix: Counting coordinate pairs from running numbers in problem 4.

Given a running number m one wishes to calculate such coordinates x and y that

$$x + \frac{(x+y)(x+y+1)}{2} = m \quad . \tag{1}$$

Denote z = x + y. Then (1) equals to:

$$z - y + \frac{z(z+1)}{2} = m \quad . \tag{2}$$

As  $z - y \ge 0$ ,

$$\frac{z(z+1)}{2} \le m \qquad \qquad , \text{ it follows that} \qquad (3)$$

$$z \le \frac{-1 \pm \sqrt{1+8m}}{2} \tag{4}$$

As  $z \in \mathbb{N}$  ja  $m, x, y \ge 0$ , it can be observed that:

$$z = \left\lfloor \frac{-1 + \sqrt{1 + 8m}}{2} \right\rfloor \tag{5}$$

Now both x and y can be calculated usind indexing function f:

$$\begin{aligned} x &= m - f(0, z) \\ y &= z - x \end{aligned}$$
 (6)

Here f(0, z) gives the running number of the first member of the diagonal (x, y). For an example, let us calculate the pair that corresponds to the running number m = 13:

$$z = \left\lfloor \frac{-1 + \sqrt{105}}{2} \right\rfloor = \lfloor 4.62 \rfloor = 4$$
$$x = 13 - f(0, 4) = 13 - 10 = 3$$
$$y = 4 - 3 = 1$$

As a result the pair (3, 1) is obtained.