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Tutorial 2
Solutions to the demonstration problems

4. Problem: Show that any alphabet Σ with at least two symbols is comparable to the binary
alphabet Γ = {0, 1}, in the sense that strings over Σ can be easily encoded into strings
over Γ and vice versa. How much can the length of a string change in your encoding? (I.e.,
if the length of a string w ∈ Σ∗ is |w| = n symbols, what is the length of the corresponding
string w′ ∈ Γ∗?) Could you design a similar encoding if the target alphabet consisted of
only one symbol, e.g. Γ = {1}?
Solution: Let Σ be some alphabet with k symbols, k > 1. The strings of Σ can be coded
as strings of Γ = {0, 1} in the following manner.

• Set the symbols of Σ to equal integers {1, . . . , k}.
• These numbers (the symbols of Σ) can be represented with binary numbers of length
dlog2 ke.

• Every string in Σ∗ can therefore be represented as a string of Γ by replacing the
symbols of Σ with their binary encoding.

The decoding from Γ∗ to Σ∗ can be done in a similar fashion by taking strings of length
dlog2 ke from a string and interpreting them as symbols of Σ.

If the length of a string w ∈ Σ∗ is |w| = n symbols, the length of its counterpart w′ ∈ Γ∗

is |w′| = n · dlog2 ke. This is because the number of symbols needed to encode any symbol
in Σ is dlog2 ke.
For an example, consider the alphabet Σ = {a, b, c, d, e, f} and the string aacfd. As
|Σ| = 6, dlog2 6e = d2.58e = 3 bits are needed to represent the symbols of Σ. One possible
encoding is

a 7→ 001 d 7→ 100
b 7→ 010 e 7→ 101
c 7→ 011 f 7→ 110

With this encoding, the representation of aacfd is 001001011110100.

A similar coding scheme cannot be constructed if Γ = {1}. A unary presentation of the
form 1 7→ 1, 2 7→ 11, 3 7→ 111, . . . can of course be defined, but the code obtained in this
way can no longer be decoded unambiguously. For an example, the encodings of 1 1 1,
1 2, 2 1 and 3 are all the string 111.

5. Problem: Prove that the Cartesian product N×N is countably infinite. (Hint: Think of
the pairs (m,n) ∈ N × N as embedded in the Euclidean (x, y) plane R2. Enumerate the
pairs by diagonals parallel to the line y = −x.) Conclude from this result and the result
of Problem 3 that also the set Q of rational numbers is countably infinite.

Solution: A set S is countably infinite, if there exists a bijective mapping f : N → S. By
intuition, all members of the set S can be assigned a unambiguous running number.

The members (x, y) ∈ N× N of the set N× N can be assigned a number as shown in the
following figure.
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The idea is to arrange all pairs of numbers on diagonals parallel to the line y = −x and
enumerate the lines by member one at a time, starting from the shortest one. Here the
enumeration can not be done parallel to the x-axis; when doing this all indices would be
used to enumerate only the y-axis and no pair (x, y), y > 0 would ever be reached.

The enumerating scheme abowe can be defined as follows:

f(x, y) = x +
x+y∑
k=1

k = x +
(x + y)(x + y + 1)

2

For an example, f(3, 1) = 13, that is, the running number of pair (3, 1) is 13. The function
f(x, y) is a bijection; for every running number there exists a unambiguous pair of num-
bers. Calculating a coordinate from a given index is relatively difficult, and is discussed
in the appendix at the end of these solutions.

The set of positive rational numbers Q+ can be presented as a pair of numbers N×N by
(x, y) ≡ x

y , y 6= 0. This is a proper subset of the countably infinite set N×N. By Problem
3, Q+ is either finite or countably infinite. If Q+ was finite, there should exists some
rational number x

y , x ∈ N, y ∈ N, y 6= 0, that would have the greatest running number
n < ∞ (in the enumeration of Q). This cannot be, because using the figure above one
could always find a rational number that would have a running numberu n′ > n. Hence,
we have contradiction with the assumption that Q+ is finite. Therefore Q+ is countably
infinite. By the same argument, the set Q−:

Q− = {(−x, y) | (x, y) ∈ Q+}

is countably infinite. Thus, the set Q = Q+ ∪ Q− is the union of two countably infinite
sets, and it too is countably infinite.

6. Problem: Let S be an arbitrary nonempty set.

(a) Give some injective (i.e. one-to-one) function f : S → P(S).

(b) Prove that there cannot exist an injective function g : P(S) → S. (Hint: Assume
that such a function g existed. Consider the set R = {s ∈ S | s /∈ g−1(s)}, and
denote r = g(R). Is it then the case that r ∈ R?)



Observe, as a consequence of item (b), that the power set P(S) of any countably infinite
set S is uncountable.

Solution: Let S 6= ∅ be an arbitrary set.

(a) Define function f : S → P(S) so that f is one-to-one (i.e. f is an injection). There
exists {a} ∈ P(S) for all a ∈ S. Furthermore, if a 6= b, {a} 6= {b} holds, so mapping
f : S → P(S), f(a) = {a} is such an injection we were looking for.
Presented below is the mapping f for S = {a, b, c}:
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(b) Assume that there exists an injection g : P(S) → S. First define a subset S′ ⊆ S
such that:

S′ = {a ∈ S | there exists a set A ⊆ S such that g(A) = a} .

We see that S′ cannot be empty as |P(S)| > 0 for all sets S.
Consider the set R = {s ∈ S′ | s /∈ g−1(s)}, and denote r = g(R). If r ∈ R we have
that r 6∈ g−1(r). However,

g−1(r) = g−1(g(R)) = R

so we have a contradiction. On the other hand, if r 6∈ R, it holds that r ∈ g−1(r) =
g−1(g(R)) = R, another contradiction. Thus, it is not possible to define an injective
function g : P(S) → S.
(The definition of S′ above is necessary because otherwise the inverse g−1 would not
necessarily exist in the definition of the set R.)

On the basis of (b) an injection g : P(S) → S cannot be formed. Moreover, if S is
countably infinite, there exists a bijection f : N → S. For P(S) to be countable, there
should exists a bijection f ′ : N → P(S). Assume that such a bijection f ′ exists. Then
mapping g ◦ f

′−1 : P(S) → S a bijection (one-to-one and onto). This is contradictory
with the fact that there exists no injection P(S) → S. Therefore P(S) is uncountable.

Appendix: Counting coordinate pairs from running numbers in problem 4.

Given a running number m one wishes to calculate such coordinates x and y that

x +
(x + y)(x + y + 1)

2
= m . (1)

Denote z = x + y. Then (1) equals to:

z − y +
z(z + 1)

2
= m . (2)



As z − y ≥ 0,

z(z + 1)
2

≤ m , it follows that (3)

z ≤ −1±
√

1 + 8m

2
(4)

As z ∈ N ja m,x, y ≥ 0, it can be observed that:

z =
⌊−1 +

√
1 + 8m

2

⌋
(5)

Now both x and y can be calculated usind indexing function f :

x = m− f(0, z)
y = z − x

(6)

Here f(0, z) gives the running number of the first member of the diagonal (x, y). For an
example, let us calculate the pair that corresponds to the running number m = 13:

z =
⌊−1 +

√
105

2

⌋
= b4.62c = 4

x = 13− f(0, 4) = 13− 10 = 3
y = 4− 3 = 1

As a result the pair (3, 1) is obtained.


