Tik-79.148 Spring 2001
Introduction to Theoretical Computer Science

Tutorial 6

Solutions to Demonstration Exercises

4.

5.

Demonstration Exercises:

The allowed regular expressions of the alphabet 3 = {a,b, (,),U,* , 0} can
be generated using the grammar G = (V, X, R, S),
V=XU{S,T,F}
R={S—TUSS—>T
T—FT— F*,
T — FT,T — F*T
F—0F—a,
F—bF— (9}

E.g. the regular expression (a U bb)*b is derived as S — T — F*T —
ST - (TUS)*T - (FUS)*T — (aUS)*T — (aUT)*T — (a U
FT)*'T — (aUbT)*T — (aUbF)*T — (aUbb)*T — (aUbb)*F — (alUbb)*b
Nontrivial formal languages are typically infinite and it is thus not possible
to represent them by exhaustive enumeration. Each family in the formal
hierarchy of languages is characterised by the way of how its members
can be concisely represented. For instance, every regular language can
be described using a regular expression and a similar connection applies
between context-free languages and context-free grammars.

The point in the example above is that the representation language for
regular languages, i.e. regular expressions, is actually a context-free lan-
guage and can thus be generated by creating the appropriate context-free
grammar.

a) The context-free grammar corresponding to the language L = {a"™b" |
m > n} is:
Y ={a,b}
V ={a,b, S, A, B}
R={S— ASB,S — e
A — Aa, A — a,
B —b,B — e}
b) The context-free grammar corresponding to the language L = {uawb |
u,w € {a,b}*, Ju| = Jw|} is:
Y ={a,b}
V ={a,b,5,T}
R={S —Tb,T — aTa,
T — aTb,T — bTh
T —bTa, T — a}

6. (applying)

Almost every modern programming language is based on a context-free
grammar. However, the grammar describes only syntactically correct pro-
grams, since many programming concepts require information about the
context. Among these are, e.g., checking whether a variable was correctly
declared before its use and type checking. In practice, a program is parsed
according to a grammar to a parse tree from which the aforementioned
concepts are verified.

The addition and subtraction in the exercise can be implemented using
the following simple grammar:

G=(V,%,R,S)
Y = {number,+,—,(,)}
R={S — number,S - S+ 5,5 —5-5,5—(9)}

Above, each integer is abstracted to a terminal symbol number. The
simplest way of implementing the parser is to make it recursive so that
each nonterminal has a corresponding function. In the grammar above,
only one function is needed, let us call it expr. The body of the function
reads the input until it is clear, which rule to apply. As pseudo code the
function looks like this:

integer expr()
integer value

If the rule is S -> number,
value = number ()

If the rule is S -> S + S,
value = expr() + expr()

If the rule is S -> S - S
value = expr() - expr()

If the rule is S > (S)
read ’(’
value = expr();
read ’)’

return value
Below is a C implementation of a simple parser for the grammar.
#include<stdio.h>

#include<ctype.h>
#include<stdlib.h>

/* Read the next input symbol */
int get_token(char expect);

int number(void);
int expr(void);

int current_token;

void error(char *st)
{
printf ("%s\n", st);
exit (0);
}

int number(void)

{
int num;
ungetc(current_token, stdin);
scanf ("%d", &num);
return num;

}
int get_token(char expect)
{
int ch;
do {
ch = getchar();
} while (ch == ’ ’); /* skip spaces in input */
return ch;
}

int expr(void)

{
int left_value = 0;
int right_value = 0;
int result = 0;

current_token = get_token(NONE);
if (isdigit(current_token)) {

left_value = number();
current_token = get_token(NONE) ;

} else if (current_token == >(’) {
left_value = expr();
if (current_token != ’)’) {
error ("parenthesis error");
}
} else {

error ("expression has to begin with a number or ’(°");

switch (current_token) {
case ’\n’:
result = left_value;
break;
case ’+’:
right_value = expr();
result = left_value + right_value ;
break;
case ’-’:
right_value = expr();
result = left_value - right_value ;
break;
case ’)’:
result = left_value;
break;
default:
error("invalid character in an expression");
}

return result;

}

int main(void)
{

int value = O;

value = expr();
printf ("Result: %d\n", value);
}

