Tutorial 2

Answers to Demonstration Exercises
4. 1° The basic case: consider the smallest non-empty set $S_{1}=\left\{a_{1}\right\}$. Its only partial order $R_{1}=\left\{\left(a_{1}, a_{1}\right)\right\}$. (A partial order is a reflexive, anti-symmetric, and transitive binary relation.)
An element $a \in S$ is a minimum whenever it doesn't occur as the second element of a pair in the relation (except that the reflexive self-loop is allowed). Formally, a is a minimum iff:

$$
\forall a, b \in S:(b, a) \in R \Rightarrow a=b
$$

The element a_{1} fulfills this condition in R_{1} so it is a minimum.
2° Induction hypothesis: Suppose that there exists a natural number n such that all partial orders on a set S have a minimum always when $|S|<n$.
3° Induction step: Let $S_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$ be a set with n elements and R_{n} be an arbitrary partial order on S_{n}. Choose now an arbitrary element $a_{i} \in S_{n}$, remove it from S_{n} as well as all pairs that refer to it from R_{n} :

$$
\begin{aligned}
& S_{n}^{\prime}=S_{n}-\left\{a_{i}\right\} \\
& R_{n}^{\prime}=\left\{(a, b) \in R_{n} \mid a \neq a_{i} \wedge b \neq a_{i}\right\}
\end{aligned}
$$

Now R_{n}^{\prime} is a partial order (prove this to yourself formally, it follows from transitivity of R_{n}). Since $\left|S_{n}^{\prime}\right|=n-1<n$, by induction hypothesis R_{n}^{\prime} has at least one minimum that we now denote by $a_{\text {min }}$.
Consider again R_{n}. Now there are two possibilities:
i) If $\left(a_{i}, a_{\min }\right) \notin R_{n}$, is $a_{\text {min }}$ also a minimum of R_{n}.
ii) If $\left(a_{i}, a_{\min }\right) \in R_{n}$, then $a_{\text {min }}$ can't be a minimum. However, since $a_{\text {min }}$ is the minimum of the partial order R_{n}^{\prime} and a partial order is always transitive, there may not be a pair $\left(b, a_{i}\right), b \neq a_{i}$ in the relation. Thus, a_{i} is a minimum of R_{n} and the induction is complete.
5. Suppose that there are n persons in the party. We try to give every one a different number of acquitances.

Person	Acquitances
1	0
2	1
3	2
\vdots	\vdots
n	$n-1$

We notice that the last person knows everybo-
dy but the first person doesn't know anybody. These two cases are in
conflict, so only $n-1$ different numbers are possible. Now by the pigeonhole principle we know that it is not possible to allocate n persons into $n-1$ slots without having at least two persons in at least one slot so it is not possible for all persons to have a different number of acquitances.
6. We can define the concatenation $v \circ w$ of strings v and $w\left(v, w \in \Sigma^{*}\right)$ as follows:

```
\(1^{\circ}\) If \(|v|=0\), then \(v \circ w=w\).
\(2^{\circ}\) If \(|v|=n+1>0\), we can write \(v\) in a form \(v=u a, u \in \Sigma^{*}, a \in \Sigma\).
```

 Now we define \(v \circ w=u \circ a w\).
 For example, $\Sigma=\{a, b\}, v=a b a, w=b b a$:

$$
\begin{aligned}
v \circ w & =a b a \circ b b a \\
& =a b \circ a b b a \\
& =a \circ b a b b a \\
& =e \circ a b a b b a=a b a b b a
\end{aligned}
$$

7. We have to prove that if we reverse a string twice, we get the original string. The simplest way to do it is by induction. To simplify the proof we will use the identity $(w x)^{R}=x^{R} w^{R}$ that is proved in the textbook.
1° The basic case: $|w|=0,\left(e^{R}\right)^{R}=e\left(\right.$ by definition $\left.e^{R}=e\right)$.
2° Induction hypothesis: Supposte that the claim holds for all $|w| \leq$ $n, n>0$.
3° Induction step: Let $|w|=n+1$. Now w can be written as $w=u a$, $a \in \Sigma, u \in \Sigma^{*},|u|=n$.

$$
\begin{aligned}
\left(w^{R}\right)^{R} & =\left((u a)^{R}\right)^{R} \\
& =\left(a u^{R}\right)^{R} \\
& =\left(u^{R}\right)^{R}(a)^{R} \text { by the auxiliary identity } \\
& =\left(u^{R}\right)^{R}(e a)^{R} \\
& =\left(u^{R}\right)^{R}\left(a e^{R}\right) \\
& =\left(u^{R}\right)^{R} a \\
& =u a=w \text { by induction hypothesis }
\end{aligned}
$$

8. A formal alphabet is a finite set of symbols. For example, the common alphabet $\{a, b, \ldots, z\}$ and the binary alphabet $\{0,1\}$ are both also formal alphabets. Most often we use letters and numbers in alphabets, but we may also use any other symbols if necessary.
The notation Σ^{*} denotes all strings that can be formed using the symbols in Σ including the empty string e. For example, if $\Sigma=\{a, b\}$, then $\Sigma^{*}=$ $\{e, a, b, a a, a b, b a, b b, \ldots\}$. If Σ is not empty, Σ^{*} is necessarily infinite.
A formal language L is some subset $L \subseteq \Sigma^{*}$. The most common notation in use is $L=\left\{w \in \Sigma^{*} \mid w\right.$ fulfills the property $\left.P\right\}$. That is, w is in the language if it satisfies some property P.
a) The set $L=\left\{w \mid\right.$ for some $\left.u \in \Sigma \Sigma, w=u u^{R} u\right\}$ contains all six letter long words where the first two letters are equal to the last two letters and the middle part contains the same string reversed. The notation $u \in \Sigma \Sigma$ denotes all two-letter words.

For example, the words abbaab $(u=a b)$ and aaaaaa $(u=a a)$ belong to L. On the other hand, $w=a b b b b a \notin L$. Since there are only a finite number of two-letter words, L too is finite.
b) The language $L=\{w \mid w w=w w w\}$ contains only the empty word e. By the condition $2|w|=3|w|$ that is only possible when $|w|=0$ and $w=e$.
c) The language $L=\left\{w \mid\right.$ for some $u, v \in \Sigma^{*}$, uvw $\left.=w v u\right\}$ contains all words $\left(L=\Sigma^{*}\right)$. We see that if we choose $u=v=e$, then $e \circ e \circ w=w=w \circ e \circ e$ and the condition is fulfilled.
d) The language $L=\left\{w \mid\right.$ for some $\left.u \in \Sigma^{*}, w w w=u u\right\}$ contains for example aa $(u=a a a)$ and aaaa $(u=a a a a a a)$. The condition is that w is either all a or all b and $3 \cdot|w|$ has to be divisible by two. The string $a b$ does not belong to the language.

