Spring 2001

Tik-79.148 Introduction to Theoretical Computer Science Tutorial 2 Answers to Demonstration Exercises

4. 1° The basic case: consider the smallest non-empty set $S_1 = \{a_1\}$. Its only partial order $R_1 = \{(a_1, a_1)\}$. (A partial order is a reflexive, anti-symmetric, and transitive binary relation.)

An element $a \in S$ is a minimum whenever it doesn't occur as the second element of a pair in the relation (except that the reflexive self-loop is allowed). Formally, a is a minimum iff:

$$\forall a, b \in S : (b, a) \in R \Rightarrow a = b,$$

The element a_1 fulfills this condition in R_1 so it is a minimum.

- 2° Induction hypothesis: Suppose that there exists a natural number n such that all partial orders on a set S have a minimum always when |S| < n.
- 3° Induction step: Let $S_n = \{a_1, \ldots, a_n\}$ be a set with *n* elements and R_n be an arbitrary partial order on S_n . Choose now an arbitrary element $a_i \in S_n$, remove it from S_n as well as all pairs that refer to it from R_n :

$$S'_n = S_n - \{a_i\}$$
$$R'_n = \{(a, b) \in R_n \mid a \neq a_i \land b \neq a_i\}$$

Now R'_n is a partial order (prove this to yourself formally, it follows from transitivity of R_n). Since $|S'_n| = n - 1 < n$, by induction hypothesis R'_n has at least one minimum that we now denote by a_{\min} . Consider again R_n . Now there are two possibilities:

- i) If $(a_i, a_{\min}) \notin R_n$, is a_{\min} also a minimum of R_n .
- ii) If $(a_i, a_{\min}) \in R_n$, then a_{\min} can't be a minimum. However, since a_{\min} is the minimum of the partial order R'_n and a partial order is always transitive, there may not be a pair $(b, a_i), b \neq a_i$ in the relation. Thus, a_i is a minimum of R_n and the induction is complete.
- 5. Suppose that there are n persons in the party. We try to give every one a different number of acquitances.

Person	Acquitances	
1	0	
2	1	
3	2	We notice that the last person knows everybo-
:	:	
•	•	
n	n-1	

dy but the first person doesn't know anybody. These two cases are in

conflict, so only n-1 different numbers are possible. Now by the pigeonhole principle we know that it is not possible to allocate n persons into n-1 slots without having at least two persons in at least one slot so it is not possible for all persons to have a different number of acquitances.

- 6. We can define the concatenation $v \circ w$ of strings v and w $(v, w \in \Sigma^*)$ as follows:
 - 1° If |v| = 0, then $v \circ w = w$.
 - 2° If |v| = n + 1 > 0, we can write v in a form v = ua, $u \in \Sigma^*, a \in \Sigma$. Now we define $v \circ w = u \circ aw$.

For example, $\Sigma = \{a, b\}, v = aba, w = bba$:

_ _

 $v \circ w = aba \circ bba$ $= ab \circ abba$ $= a \circ babba$ $= e \circ ababba = ababba$

- 7. We have to prove that if we reverse a string twice, we get the original string. The simplest way to do it is by induction. To simplify the proof we will use the identity $(wx)^R = x^R w^R$ that is proved in the textbook.
 - 1° The basic case: |w| = 0, $(e^R)^R = e$ (by definition $e^R = e$).
 - 2° Induction hypothesis: Supposte that the claim holds for all $|w| \leq n, n > 0.$
 - 3° Induction step: Let |w| = n + 1. Now w can be written as w = ua, $a \in \Sigma, u \in \Sigma^*, |u| = n$.

$$(w^{R})^{R} = ((ua)^{R})^{R}$$

= $(au^{R})^{R}$
= $(u^{R})^{R}(a)^{R}$ by the auxiliary identity
= $(u^{R})^{R}(ea)^{R}$
= $(u^{R})^{R}(ae^{R})$
= $(u^{R})^{R}a$
= $ua = w$ by induction hypothesis

8. A formal *alphabet* is a finite set of symbols. For example, the common alphabet $\{a, b, \ldots, z\}$ and the binary alphabet $\{0, 1\}$ are both also formal alphabets. Most often we use letters and numbers in alphabets, but we may also use any other symbols if necessary.

The notation Σ^* denotes all *strings* that can be formed using the symbols in Σ including the empty string *e*. For example, if $\Sigma = \{a, b\}$, then $\Sigma^* = \{e, a, b, aa, ab, ba, bb, \dots\}$. If Σ is not empty, Σ^* is necessarily infinite.

A formal *language* L is some subset $L \subseteq \Sigma^*$. The most common notation in use is $L = \{w \in \Sigma^* \mid w \text{ fulfills the property } P\}$. That is, w is in the language if it satisfies some property P. a) The set $L = \{w \mid \text{for some } u \in \Sigma\Sigma, w = uu^R u\}$ contains all six letter long words where the first two letters are equal to the last two letters and the middle part contains the same string reversed. The notation $u \in \Sigma\Sigma$ denotes all two-letter words.

For example, the words abbaab (u = ab) and aaaaaa (u = aa) belong to L. On the other hand, $w = abbbba \notin L$. Since there are only a finite number of two-letter words, L too is finite.

- b) The language $L = \{w \mid ww = www\}$ contains only the empty word e. By the condition 2|w| = 3|w| that is only possible when |w| = 0and w = e.
- c) The language $L = \{w \mid \text{for some } u, v \in \Sigma^*, uvw = wvu\}$ contains all words $(L = \Sigma^*)$. We see that if we choose u = v = e, then $e \circ e \circ w = w = w \circ e \circ e$ and the condition is fulfilled.
- d) The language $L = \{w \mid \text{for some } u \in \Sigma^*, www = uu\}$ contains for example $aa \ (u = aaa)$ and $aaaa \ (u = aaaaaaa)$. The condition is that w is either all a or all b and $3 \cdot |w|$ has to be divisible by two. The string ab does not belong to the language.