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4. We are given two sets, A and B, as well as a function f : A → B. We then
define a relation R ⊆ A × A (a relation between elements of A) with the
help of B and f . A pair (a, b) is in R exactly when f maps both of them
to the same element of B, that is, when f(a) = f(b).

For example, consider the case where:

A = {a, b, c, d, e}
B = {1, 2, 3}
f = {(a, 1), (b, 2), (c, 1), (d, 2), (e, 3)} .

Since both f(a) = 1 and f(c) = 1, the pairs (a, c) and (c, a) are both in
R. Also, f(b) = 2 = f(d) so (b, d) ∈ R and (d, b) ∈ R. Since f(x) = f(x)
for all elements x ∈ A, the reflexive pairs (a, a), (b, b), (c, c), (d, d), and
(e, e) are all in R. The following picture shows R as a graph:
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The aim of the exercise is to show that no matter how we choose the sets A
and B and the function f , the relation R = {(a, b) | f(a) = f(b)} is always
an equivalence relation. A relation is an equivalence when it is symmetric,
transitive, and reflexive. Now we check whether the properties hold for R.

i) A relation R ⊆ A×A is symmetric, if (b, a) ∈ R always when (a, b) ∈
R. Since

f(a) = f(b) ⇔ f(b) = f(a),

the pair (b, a) is always in R whenever (a, b) is in it, so R is symmetric.

ii) A relation R ⊆ A×A is reflexive, if for all a ∈ A holds that (a, a) ∈ R.
Because

f(a) = f(a),

the property holds.

iii) A relation R ⊆ A × A is transitive if always when (a, b) ∈ R and
(b, c) ∈ R it holds that (a, c) ∈ R. Intutively, a relation is transitive if
two elements that are connected by some path along the arcs of the
relation, are also connected by a direct arc.
If we have:

f(a) = f(b) ∧ f(b) = f(c),
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then also
f(a) = f(b) = f(c) ⇒ f(a) = f(c),

so the relation is transitive.

Because all three properties hold, R is an equivalence relation.

5. A relation is a partial order if it is reflexive, transitive, and it doesn’t have
non-trivial loops (that is, (a, b) ∈ R and (b, a) ∈ R implies that a = b). We
now prove that the relation RS = {(A,B) | A,B ∈ S ja A ⊆ B} fulfills all
three conditions:

i) Since A ⊆ A, for all A ∈ S : (A,A) ∈ RS so RS is reflexive.

ii) Because A ⊆ B,B ⊆ C ⇒ A ⊆ C, the relation is also transitive.

iii) The relation may have a loop only if A ⊆ B and B ⊆ A. Then by
definition A = B, and the loop is trivial.

6. A set A is closed with respect to some function1, f(a1, . . . , an) if f(a1, . . . , an) ∈
A always when a1, . . . , an ∈ A. In other words, if the arguments of the
function belong to A, the result also belongs to it. For example, the set N
of natural numbers is closed with respect to addition but not with respect
to subtraction, since a− b may be negative.

A relation B is the closure of R with respect to a property P if R ⊆ B and
B is the smallest relation that is closed with respect to P . (Two relations
may be compared because they are essentially sets of ordered pairs).

Consider the relation R ⊆ A×A where A = {a, b, c, d} and R = {(a, b), (c, a)}.
A relation is symmetric if (b, a) ∈ R always when (a, b) ∈ R, so the pro-
perty that corresponds to symmetry is the function fs : A × A → A × A
that reverses all pairs of the relation:

fs((x, y)) = (y, x).

Now we can see that R is not symmetrically closed since, for example,
(a, b) ∈ R but f((a, b)) = (b, a) /∈ R. We get the symmetric closure Rs of
R by adding the reverse of all pairs that lack it:

Rs = {(a, b), (b, a), (c, a), (a, c)}.

To construct the transitive closure Rst we have to add the pair (x, z)
whenever there are pairs (x, y), (y, z) ∈ Rs. In particular, because Rs is
symmetric, we know that for all arcs (x, y) there exists a reverse arc (y, x)
so (x, x) ∈ Rst. By adding all missing pairs we get:

Rst = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}.

However, Rst is not reflexive, since d ∈ A, but (d, d) /∈ Rst. Now we have
constructed a counter example for the given claim.

Note that Rst is not reflexive only in the case that A has some element a
that doesn’t occur in R at all. In all other cases Rst is reflexive.

1Here f is a mapping f : Bn → B where A ⊆ B.
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7. A partition of a set S is a collection P = {P1, . . . , Pn} of sets such that
all elements of S occur in exactly one Pi and no Pi is empty. Formally:
P ⊆ 2S is a partition if:

• Pi 6= ∅ for all 1 ≤ i ≤ n.
• Pi ∩ Pj = ∅ for all i 6= j.
•

⋃
Pi = S.

For example, the set Π of all possible partitions of S = {1, 2, 3} is:

Π = {{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}},
{{1}{2, 3}}, {1, 2, 3}}}

The picture below shows how the relation R is defined among the elements
of Π (the reflexive arcs are left out of the picture for clarity):

i) Reflexivity: Since Si ⊆ Si for each Si ∈ Πj , the relation has the pair
(Πj ,Πj) for all Πj (1 ≤ i ≤ |Πj |, 1 ≤ j ≤ |Π|).

ii) Transitivity: If (Πi,Πj) ∈ R and (Πj ,Πk) ∈ R, then for each Si ∈ Πi

there has to exist Sj ∈ Πj such that Si ⊆ Sj . From the definition of
R we know that there has to be some Sk ∈ Πk such that Sj ⊆ Sk.
Now Si ⊆ Sj ⊆ Sk so Si ⊆ Sk and there is a pair (Πi,Πk) in the
relation.

iii) No non-trivial loops: If (Πi,Πj) ∈ R and (Πj ,Πi) ∈ R we know
that for all Si ∈ Πi there has to exist some Sj ∈ Πj such that
Si ⊆ Sj . On the other hand, there also has to be some S′

i ∈ Πi where
Sj ⊆ S′

i. From this we get that Si ⊆ S′
i. Since by definition all sets

in a partition Πi are nonempty and all elements of S are in exactly
one set Si, the only possibility is that Si = S′

i and:

Si ⊆ Sj ⊆ Si.

This implies that Si = Sj and that Πi = Πj so the loop is trivial.

The maximum element of R is the trivial partition that has S as its only
element. The minimum element is a partition where all elements of S
belong to different partitions.
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