Tutorial 1

Answers to Demonstration Exercises
4. We are given two sets, A and B, as well as a function $f: A \rightarrow B$. We then define a relation $R \subseteq A \times A$ (a relation between elements of A) with the help of B and f. A pair (a, b) is in R exactly when f maps both of them to the same element of B, that is, when $f(a)=f(b)$.
For example, consider the case where:

$$
\begin{aligned}
A & =\{a, b, c, d, e\} \\
B & =\{1,2,3\} \\
f & =\{(a, 1),(b, 2),(c, 1),(d, 2),(e, 3)\} .
\end{aligned}
$$

Since both $f(a)=1$ and $f(c)=1$, the pairs (a, c) and (c, a) are both in R. Also, $f(b)=2=f(d)$ so $(b, d) \in R$ and $(d, b) \in R$. Since $f(x)=f(x)$ for all elements $x \in A$, the reflexive pairs $(a, a),(b, b),(c, c),(d, d)$, and (e, e) are all in R. The following picture shows R as a graph:

The aim of the exercise is to show that no matter how we choose the sets A and B and the function f, the relation $R=\{(a, b) \mid f(a)=f(b)\}$ is always an equivalence relation. A relation is an equivalence when it is symmetric, transitive, and reflexive. Now we check whether the properties hold for R.
i) A relation $R \subseteq A \times A$ is symmetric, if $(b, a) \in R$ always when $(a, b) \in$ R. Since

$$
f(a)=f(b) \Leftrightarrow f(b)=f(a)
$$

the pair (b, a) is always in R whenever (a, b) is in it, so R is symmetric.
ii) A relation $R \subseteq A \times A$ is reflexive, if for all $a \in A$ holds that $(a, a) \in R$. Because

$$
f(a)=f(a),
$$

the property holds.
iii) A relation $R \subseteq A \times A$ is transitive if always when $(a, b) \in R$ and $(b, c) \in R$ it holds that $(a, c) \in R$. Intutively, a relation is transitive if two elements that are connected by some path along the arcs of the relation, are also connected by a direct arc.
If we have:

$$
f(a)=f(b) \wedge f(b)=f(c)
$$

then also

$$
f(a)=f(b)=f(c) \Rightarrow f(a)=f(c),
$$

so the relation is transitive.
Because all three properties hold, R is an equivalence relation.
5. A relation is a partial order if it is reflexive, transitive, and it doesn't have non-trivial loops (that is, $(a, b) \in R$ and $(b, a) \in R$ implies that $a=b)$. We now prove that the relation $R_{S}=\{(A, B) \mid A, B \in S$ ja $A \subseteq B\}$ fulfills all three conditions:
i) Since $A \subseteq A$, for all $A \in S:(A, A) \in R_{S}$ so R_{S} is reflexive.
ii) Because $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$, the relation is also transitive.
iii) The relation may have a loop only if $A \subseteq B$ and $B \subseteq A$. Then by definition $A=B$, and the loop is trivial.
6. A set A is closed with respect to some function ${ }^{1}, f\left(a_{1}, \ldots, a_{n}\right)$ if $f\left(a_{1}, \ldots, a_{n}\right) \in$ A always when $a_{1}, \ldots, a_{n} \in A$. In other words, if the arguments of the function belong to A, the result also belongs to it. For example, the set \mathbb{N} of natural numbers is closed with respect to addition but not with respect to subtraction, since $a-b$ may be negative.
A relation B is the closure of R with respect to a property P if $R \subseteq B$ and B is the smallest relation that is closed with respect to P. (Two relations may be compared because they are essentially sets of ordered pairs).
Consider the relation $R \subseteq A \times A$ where $A=\{a, b, c, d\}$ and $R=\{(a, b),(c, a)\}$. A relation is symmetric if $(b, a) \in R$ always when $(a, b) \in R$, so the property that corresponds to symmetry is the function $f_{s}: A \times A \rightarrow A \times A$ that reverses all pairs of the relation:

$$
f_{s}((x, y))=(y, x)
$$

Now we can see that R is not symmetrically closed since, for example, $(a, b) \in R$ but $f((a, b))=(b, a) \notin R$. We get the symmetric closure R_{s} of R by adding the reverse of all pairs that lack it:

$$
R_{s}=\{(a, b),(b, a),(c, a),(a, c)\}
$$

To construct the transitive closure $R_{s t}$ we have to add the pair (x, z) whenever there are pairs $(x, y),(y, z) \in R_{s}$. In particular, because R_{s} is symmetric, we know that for all $\operatorname{arcs}(x, y)$ there exists a reverse $\operatorname{arc}(y, x)$ so $(x, x) \in R_{s t}$. By adding all missing pairs we get:

$$
R_{s t}=\{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c)\}
$$

However, $R_{s t}$ is not reflexive, since $d \in A$, but $(d, d) \notin R_{s t}$. Now we have constructed a counter example for the given claim.
Note that $R_{s t}$ is not reflexive only in the case that A has some element a that doesn't occur in R at all. In all other cases $R_{s t}$ is reflexive.

[^0]
7. A partition of a set S is a collection $P=\left\{P_{1}, \ldots, P_{n}\right\}$ of sets such that all elements of S occur in exactly one P_{i} and no P_{i} is empty. Formally: $P \subseteq 2^{S}$ is a partition if:

- $P_{i} \neq \emptyset$ for all $1 \leq i \leq n$.
- $P_{i} \cap P_{j}=\emptyset$ for all $i \neq j$.
- $\bigcup P_{i}=S$.

For example, the set Π of all possible partitions of $S=\{1,2,3\}$ is:

$$
\begin{aligned}
\Pi= & \{\{\{1\},\{2\},\{3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\}, \\
& \{\{1\}\{2,3\}\},\{1,2,3\}\}\}
\end{aligned}
$$

The picture below shows how the relation R is defined among the elements of Π (the reflexive arcs are left out of the picture for clarity):

i) Reflexivity: Since $S_{i} \subseteq S_{i}$ for each $S_{i} \in \Pi_{j}$, the relation has the pair $\left(\Pi_{j}, \Pi_{j}\right)$ for all $\Pi_{j}\left(1 \leq i \leq\left|\Pi_{j}\right|, 1 \leq j \leq|\Pi|\right)$.
ii) Transitivity: If $\left(\Pi_{i}, \Pi_{j}\right) \in R$ and $\left(\Pi_{j}, \Pi_{k}\right) \in R$, then for each $S_{i} \in \Pi_{i}$ there has to exist $S_{j} \in \Pi_{j}$ such that $S_{i} \subseteq S_{j}$. From the definition of R we know that there has to be some $S_{k} \in \Pi_{k}$ such that $S_{j} \subseteq S_{k}$. Now $S_{i} \subseteq S_{j} \subseteq S_{k}$ so $S_{i} \subseteq S_{k}$ and there is a pair $\left(\Pi_{i}, \Pi_{k}\right)$ in the relation.
iii) No non-trivial loops: If $\left(\Pi_{i}, \Pi_{j}\right) \in R$ and $\left(\Pi_{j}, \Pi_{i}\right) \in R$ we know that for all $S_{i} \in \Pi_{i}$ there has to exist some $S_{j} \in \Pi_{j}$ such that $S_{i} \subseteq S_{j}$. On the other hand, there also has to be some $S_{i}^{\prime} \in \Pi_{i}$ where $S_{j} \subseteq S_{i}^{\prime}$. From this we get that $S_{i} \subseteq S_{i}^{\prime}$. Since by definition all sets in a partition Π_{i} are nonempty and all elements of S are in exactly one set S_{i}, the only possibility is that $S_{i}=S_{i}^{\prime}$ and:

$$
S_{i} \subseteq S_{j} \subseteq S_{i}
$$

This implies that $S_{i}=S_{j}$ and that $\Pi_{i}=\Pi_{j}$ so the loop is trivial.
The maximum element of R is the trivial partition that has S as its only element. The minimum element is a partition where all elements of S belong to different partitions.

[^0]: ${ }^{1}$ Here f is a mapping $f: B^{n} \rightarrow B$ where $A \subseteq B$.

