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Introduction to Theoretical Computer Science

Tutorial 1

Answers to Demonstration Exercises

4. We are given two sets, A and B, as well as a function f : A — B. We then
define a relation R C A x A (a relation between elements of A) with the
help of B and f. A pair (a,b) is in R exactly when f maps both of them
to the same element of B, that is, when f(a) = f(b).

For example, consider the case where:

A={a,b,c,d e}

B = {1,2,3}

f= {(a7 1), (bv 2)7 (C, 1)7 (d7 2)7 (673)} .
(

Since both f(a) =1 and f(c) = 1, the pairs (a,c) and (c,a) are both in
R. Also, f(b) =2 = f(d) so (b,d) € R and (d,b) € R. Since f(z) = f(x)
for all elements x € A, the reflexive pairs (a,a), (b,b), (¢, c¢), (d,d), and
(e, e) are all in R. The following picture shows R as a graph:
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The aim of the exercise is to show that no matter how we choose the sets A
and B and the function f, the relation R = {(a,b) | f(a) = f(b)} is always
an equivalence relation. A relation is an equivalence when it is symmetric,
transitive, and reflexive. Now we check whether the properties hold for R.

i) A relation R C A x A is symmetric, if (b,a) € R always when (a,b) €
R. Since
fla) = f(b) = f(b) = f(a),
the pair (b, a) is always in R whenever (a, b) is in it, so R is symmetric.

ii) A relation R C Ax A is reflexive, if for all a € A holds that (a,a) € R.
Because

the property holds.

iii) A relation R C A x A is transitive if always when (a,b) € R and
(b,c¢) € R it holds that (a,c) € R. Intutively, a relation is transitive if
two elements that are connected by some path along the arcs of the
relation, are also connected by a direct arc.

If we have:

fa) = f(B) A F(b) = f(e),



then also
fla) = f(b) = f(c) = f(a) = f(c),

so the relation is transitive.

Because all three properties hold, R is an equivalence relation.

5. A relation is a partial order if it is reflexive, transitive, and it doesn’t have
non-trivial loops (that is, (a,b) € R and (b,a) € R implies that a = b). We
now prove that the relation Rg = {(A,B) | A,B € S ja A C B} fulfills all
three conditions:

i) Since A C A, for all A€ S: (A4, A) € Rs so Rg is reflexive.
ii) Because A C B,B C C = A C C, the relation is also transitive.

iii) The relation may have a loop only if A C B and B C A. Then by
definition A = B, and the loop is trivial.

6. A set Ais closed with respect to some function!, f(ay,...,a,)if f(a1,...,a,) €
A always when aq, ..., a, € A. In other words, if the arguments of the
function belong to A, the result also belongs to it. For example, the set N
of natural numbers is closed with respect to addition but not with respect
to subtraction, since a — b may be negative.

A relation B is the closure of R with respect to a property P if R C B and
B is the smallest relation that is closed with respect to P. (Two relations
may be compared because they are essentially sets of ordered pairs).

Consider the relation R C Ax A where A = {a, b, ¢,d} and R = {(a,b), (¢,a)}.
A relation is symmetric if (b,a) € R always when (a,b) € R, so the pro-
perty that corresponds to symmetry is the function f; : Ax A — Ax A
that reverses all pairs of the relation:

fs((x7y)) = (ya 3;‘)

Now we can see that R is not symmetrically closed since, for example,
(a,b) € R but f((a,b)) = (b,a) ¢ R. We get the symmetric closure R, of
R by adding the reverse of all pairs that lack it:

Rs = {(a,b), (b,a), (c,a),(a,c)}.

To construct the transitive closure Rg; we have to add the pair (z,z)
whenever there are pairs (z,y), (y,2) € Rs. In particular, because R; is
symmetric, we know that for all arcs (z,y) there exists a reverse arc (y, x)
so (z,z) € Rg. By adding all missing pairs we get:

Rst = {(aa a)) (CL, b)7 (CL, C), (bv a‘)) (b7 b)y (b7 C)a (67 CI,), (Cv b)y (C7 C)}
However, Ry, is not reflexive, since d € A, but (d,d) ¢ Rs:. Now we have
constructed a counter example for the given claim.

Note that R, is not reflexive only in the case that A has some element a
that doesn’t occur in R at all. In all other cases Ry; is reflexive.

1Here f is a mapping f : B® — B where A C B.



7. A partition of a set S is a collection P = {Py,..., P,} of sets such that
all elements of S occur in exactly one P; and no P; is empty. Formally:
P C 29 is a partition if:
e P #£Pforalll <i<n.
e P,NP; =0 forall i # j.
e | JP =5.

For example, the set II of all possible partitions of S = {1,2,3} is:

I = {{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}
{1{2,3}},{1,2,3}}}

The picture below shows how the relation R is defined among the elements
of II (the reflexive arcs are left out of the picture for clarity):
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i) Reflexivity: Since S; C S; for each S; € II;, the relation has the pair
ii) Transitivity: If (II;,II;) € R and (IL;,II}) € R, then for each S; € II;
there has to exist S; € II; such that S; C S;. From the definition of
R we know that there has to be some Sj, € II;, such that S; C Si.
Now S; € S; C Sk so S; C Sy and there is a pair (II;,II;) in the
relation.
iii) No non-trivial loops: If (II;,II;) € R and (II;,II;) € R we know
that for all S; € II; there has to exist some S; € II; such that
S; € Sj. On the other hand, there also has to be some S, € II; where
S; € S.. From this we get that S; C S;. Since by definition all sets
in a partition II; are nonempty and all elements of S are in exactly
one set S;, the only possibility is that S; = S} and:

S; €8; C 8.
This implies that S; = S; and that II; = II; so the loop is trivial.

The maximum element of R is the trivial partition that has S as its only
element. The minimum element is a partition where all elements of S
belong to different partitions.



