Ordinary Exercises:

1. Construct Turing machines that decide the following languages. Give the answers as machine schemas. (The alphabet is $\{a, b\}$ in all cases):
a) \emptyset
b) $\{e\}$
c) $a^{*} \cup b^{*}$
2. Construct a Turing machine that accepts the language $a b^{*} b$. Give both transition function and machine schema.
3. Construct a Turing machine that computes the function:

$$
\begin{aligned}
f: \mathbb{Z}_{2^{n}} & \rightarrow \mathbb{Z}_{2^{n}} \\
x & \mapsto x-1\left(\bmod 2^{n}\right) .
\end{aligned}
$$

The input and output are n-length words of the alphabet $\{0,1\}$.
An example computation with $n=3:(s, \triangleright \sqcup 010 \sqcup) \vdash^{*}(h, \triangleright \sqcup 001 \sqcup)$.

Demonstration exercises:

4. What do the following Turing machines do:
a)

$>R$
b)

d)

5. a) Construct a Turing machine that accepts the language $a^{*} b a^{*} b$.
b) Construct a Turing machine that decides the language $\left\{w w^{R} \mid w \in\right.$ $\left.\{a, b\}^{*}\right\}$.
c) Construct a Turing machine that computes the function $f(n, m)=$ $n+m$, where $n, m \in \mathbb{N}$.
6. difficult Construct a 3 -tape Turing machine that computes the product of two
