Spring 2001

Tik-79.148 Introduction to Theoretical Computer Science Tutorial 9 Exercises

Ordinary Exercises:

1. Construct Turing machines that *decide* the following languages. Give the answers as machine schemas. (The alphabet is $\{a, b\}$ in all cases):

a) \emptyset b) $\{e\}$ c) $a^* \cup b^*$

- 2. Construct a Turing machine that accepts the language ab^*b . Give both transition function and machine schema.
- 3. Construct a Turing machine that computes the function:

$$\begin{array}{rccc} f:\mathbb{Z}_{2^n}&\to&\mathbb{Z}_{2^n}\\ &x&\mapsto&x-1\ (\mathrm{mod}\ 2^n). \end{array}$$

The input and output are *n*-length words of the alphabet $\{0, 1\}$.

An example computation with n = 3: $(s, \triangleright \sqcup 010 \sqcup) \vdash_M^* (h, \triangleright \sqcup 001 \sqcup)$.

Demonstration exercises:

4. What do the following Turing machines do:

$$\begin{array}{c} a) & \swarrow \\ & > R \\ & & & & \\ & & \downarrow b \\ & & & \\ & & & \\ c) \\ & > LL \end{array} \qquad \qquad \begin{array}{c} b) \\ & > R \xrightarrow{a} \\ & \downarrow b \\ & a \\ & & \\ & & \\ & & \\ \end{array} \qquad \qquad b \\ & & \downarrow b \\ & a \\ & & \\ & & \\ & & \\ \end{array} \qquad \qquad \begin{array}{c} b) \\ & & \downarrow b \\ & a \\ & & \\ & & \\ & & \\ \end{array} \qquad \qquad b \\ & & \downarrow b \\ & & \\ & & \\ & & \\ \end{array}$$

- 5. a) Construct a Turing machine that accepts the language a^*ba^*b .
 - b) Construct a Turing machine that decides the language $\{ww^R \mid w \in \{a, b\}^*\}$.
 - c) Construct a Turing machine that computes the function f(n,m) = n + m, where $n, m \in \mathbb{N}$.
- 6. *difficult* Construct a 3-tape Turing machine that computes the product of two