Ordinary exercises:

1. Let $G=(V, \Sigma, R, S)$ be a context-free grammar where

$$
\begin{aligned}
& V=\{0,1,2, S, A, R\} \\
& \Sigma=\{0,1,2\} \\
& R=\{S \rightarrow A R, A \rightarrow 0, A \rightarrow 0 A, R \rightarrow 1 R 2, R \rightarrow e\}
\end{aligned}
$$

Give a derivation for the string 001122. Give an informal description on what words belong to the language defined by the grammar. Is the language regular?
2. Construct context-free grammars for the following languages:
a) $\left\{w \in\{a, b, c\}^{*} \mid w=w^{R}\right\}$
b) $\left\{w \in\{a, b\}^{*} \mid\right.$ there are twice as many a s than b s in $\left.w\right\}$
3. Let $G=(V, \Sigma, R, S)$ be a regular grammar

$$
\begin{aligned}
V= & \{a, b, A, B, S\} \\
\Sigma= & \{a, b\} \\
R= & \{S \rightarrow a b A, S \rightarrow B, S \rightarrow b a B, \\
& S \rightarrow e, A \rightarrow b S, B \rightarrow a S, A \rightarrow b\}
\end{aligned}
$$

Construct a non-deterministic finite state automaton M such that $L(M)=$ $L(G)$. Compare how Vertaile tapaa, jolla automaatit käsittelevät sanaa abbaabb.

Demonstration exercises

4. Let $\Sigma=\left\{a, b,(),, \cup,{ }^{*}, \emptyset\right\}$. Construct a context-free grammar that generates all valid regular expressions that can be formed with symbols in Σ^{*}.
5. Construct context-free grammars for the following languages:
a) $\left\{a^{m} b^{n} \mid m \geq n\right\}$
b) $\left\{u a w b\left|u, w \in\{a, b\}^{*},|u|=|w|\right\}\right.$
6. (practical)

Design and implement a simple parsers that reads consequtive additions and subtractions of natural numbers (for example, $2+3-8+2$) and prints out the sum after the user presses enter.

