Introduction to Theoretical Computer Science

Tutorial 3

Exercises

Ordinary exercises:

1. Simplify the following regular expressions:
a) $\left(\emptyset^{*} \cup a\right)\left(a^{*}\right)^{*}(b \cup a) b^{*}$
b) $(a \cup b)^{*} \cup \emptyset \cup(a \cup b) b^{*} a^{*}$
c) $a\left(b^{*} \cup a^{*}\right)\left(a^{*} b^{*}\right)^{*}$
2. Write the regular expressions over the alphabet $\{0,1\}$, which describe the following languages:
a) $L=\{w \mid w$ has at most on pair of consequetive ones $\}$
b) $L=\{w \mid w$ has an even number of zeros $\}$
c) $L=\{w \mid w$ does not contain the substring 101 $\}$
3. Which of the following statements are true? Why?
a) $a b a \in\left(\left((c \cup b)^{*} a^{*}\right)^{*}\left(a^{*} \cup b^{*}\right)^{*}\right)^{*}$
b) $(a \cup b)^{*}=a^{*} \cup b^{*}$
c) $(a \cup b)^{*} \subseteq\left(a^{*} b^{*}\right)^{*}$

Demonstration exercises:

4. Give a proof or a counterexample to the following statements.
a) $b a a \in a^{*} b^{*} a^{*} b^{*}$
b) $b^{*} a^{*} \cap a^{*} b^{*}=a^{*} \cup b^{*}$
c) $a^{*} b^{*} \cap c^{*} d^{*}=\emptyset$
d) $a b c d \in\left(a(c d)^{*} b\right)^{*}$
5. Show that $a(b \cup c)=a b \cup a c$
6. (Difficult) Show that if a language L is regular, then also the language $L^{\prime}=\{w \mid u w \in L$ for some string $u\}$ is regular.
