Introduction to Theoretical Computer Science
Tutorial 11
Exercises

Ordinary exercises: Let the function odd: $\mathbb{N} \rightarrow \mathbb{N}$ be defined as follows:

$$
\operatorname{odd}(n)= \begin{cases}0 & , n \text { is even } \\ 1 & , n \text { is odd }\end{cases}
$$

Show that $\operatorname{odd}(n)$ is primitive recursive.

1. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a primitive recursive function. Show that the function $F: \mathbb{N} \rightarrow \mathbb{N}$:

$$
F(n)=f(f(f(\cdots f(n) \cdots))),
$$

where f is composed with itself n times, is primitive recursive.
2. Show that the function:

$$
\operatorname{prime}(n)= \begin{cases}1 & , n \text { is prime } \\ 0 & , \text { otherwise }\end{cases}
$$

is μ-recursive.
The following functions that are known to be primitive recursive may help you in the proof:

$$
\operatorname{iszero}(n)=\left\{\begin{array}{ll}
0 & , n>0 \\
1 & , n=0
\end{array} \quad n \sim m= \begin{cases}n-m & , n>m \\
0 & , n \leq m\end{cases}\right.
$$

Additionally the addition, multiplication and comparison of two natural numbers are all primitive recursive.

Demonstration exercises:

3. Show that the function f is primitive recursive when $f(n)$ is the nth odd natural number.
4. Define the remainder of two natural numbers as a μ-recursive funtion. Use bounded minimization in your answer.
5. Let $\Delta=\{a, b, c\}, \beta=4$ and

$$
d_{1}=a, \quad d_{2}=b, \quad d_{3}=c
$$

a) What is the Gödel number of the string $a b c$ in this system.
b) What string corresponds to the Gödel number 19.
6. (difficult) The kernel of a directed graph $G=(V, E)$ is a set $K \subseteq V$ of nodes such that:
(a) For all $v, u \in K$, the edge $(u, v) \notin E$ and
(b) For all $v \notin K$ there exists $u \in K$ such that $(u, v) \in E$.

Prove that the problem of finding a kernel is NP-complete.

