Ordinary exercises:

1. Let $A=\{a, b, c\}, B=\{b, d\}$ ja $C=\{a, c, d, e\}$. Write the following sets explicitly:
a) $A \cup(C-B)$
b) $B \times(A \cap C)$
c) $2^{\{\emptyset\}}-2^{\emptyset}$
2. Let $A=\{a, b, c, d\}$ and a relation $R \subseteq A \times A$:

$$
R=\{(a, a),(a, b),(a, d),(b, d),(b, c),(c, b),(d, d)\}
$$

Draw directed graphs representing the following relations:
a) R
b) R^{-1}
c) $\quad R \circ R$
d) $R \cup(R \circ R)$
3. Let $A=\{a, b, c, d\}$ and $R \subseteq A \times A$:

$$
R=\{(a, b),(b, c),(c, a),(c, c),(d, c)\}
$$

Draw directed graphs representing
a) the transitive closure of R;
b) the symmetric closure of R; and
c) the reflexive transitive closure of R.

Demonstration exercises:

4. Let $f: A \rightarrow B$. Show that the following relation R is an equivalence relation on $A:(a, b) \in R$ if and only if $f(a)=f(b)$.
5. Prove that if S is any collection of sets, then $R_{s}=\{(A, B) \mid A, B \in$ S and $A \subseteq B\}$ is a partial order.
6. Is the transitive closure of a symmetric closure of a binary relation necessarily reflexive? Prove it or give a counterexample.
7. Let S be any set, and let \mathcal{P} be the set of all partitions of S. Let R be the binary relation on \mathcal{P} such that $\left(\Pi_{1} \cdot \Pi_{2}\right) \in R$ if and only if for every $S_{1} \in \Pi_{1}$, there is an $S_{2} \in \Pi_{2}$ such that $S_{1} \subseteq S_{2}$. Show that R is a partial order on \mathcal{P}. What elements of \mathcal{P} are minimal and maximal?
