Spring 2001

Tik-79.148 Introduction to Theoretical Computer Science Tutorial 1 Exercises

Ordinary exercises:

- 1. Let $A = \{a, b, c\}$, $B = \{b, d\}$ ja $C = \{a, c, d, e\}$. Write the following sets explicitly:
 - a) $A \cup (C B)$
 - b) $B \times (A \cap C)$
 - c) $2^{\{\emptyset\}} 2^{\emptyset}$
- 2. Let $A = \{a, b, c, d\}$ and a relation $R \subseteq A \times A$:

$$R = \{(a, a), (a, b), (a, d), (b, d), (b, c), (c, b), (d, d)\}$$

Draw directed graphs representing the following relations:

- a) R c) $R \circ R$ b) R^{-1} d) $R \cup (R \circ R)$
- 3. Let $A = \{a, b, c, d\}$ and $R \subseteq A \times A$:

$$R = \{(a, b), (b, c), (c, a), (c, c), (d, c)\}$$

Draw directed graphs representing

- a) the transitive closure of R;
- b) the symmetric closure of R; and
- c) the reflexive transitive closure of R.

Demonstration exercises:

- 4. Let $f : A \to B$. Show that the following relation R is an equivalence relation on $A: (a, b) \in R$ if and only if f(a) = f(b).
- 5. Prove that if S is any collection of sets, then $R_s = \{(A, B) \mid A, B \in S \text{ and } A \subseteq B\}$ is a partial order.
- 6. Is the transitive closure of a symmetric closure of a binary relation necessarily reflexive? Prove it or give a counterexample.
- 7. Let S be any set, and let \mathcal{P} be the set of all partitions of S. Let R be the binary relation on \mathcal{P} such that $(\Pi_1.\Pi_2) \in R$ if and only if for every $S_1 \in \Pi_1$, there is an $S_2 \in \Pi_2$ such that $S_1 \subseteq S_2$. Show that R is a partial order on \mathcal{P} . What elements of \mathcal{P} are minimal and maximal?