
T-79.1001 Syksy 2007
Introduction to Theoretical Computer Science (T)
Session 7
Answers to demonstration exercises

4. Problem: Pattern expressions are a generalisation of regular expressions used e.g. in
some text editing tools of UN*X operating systems. In addition to the usual regular
expression constructs, a pattern expression may contain string variables, including the
constraint that any two appearances of the same variable must correspond to the same
substring. Thus e.g. abXb∗Xa and aX(a ∪ b)∗Y X(a ∪ b)∗Y a are pattern expressions
over the alphabet {a, b}. The first one of these describes the language {awbnwa | w ∈
{a, b}∗, n ≥ 0}. Prove that pattern expressions are a proper generalisation of regular
expressions, i.e. that pattern expressions can be used to describe also some nonregular
languages.

Answer:

Consider the pattern expression XX . This expression denotes the language L = {zz |
z ∈ {a, b}∗. Suppose that L is regular. Then, the pumping lemma for regular languages
holds for it:

Lemma: If L is a regular language, then there exists an integer n > 0 such that for each
string x ∈ n it holds that if |x| ≥ n, then x = uvw where (1) |uv| ≤ n, (2) |v| > 0, and
(3) uvkw ∈ L for every k ∈ N.

Let us examine the string x = anbanb ∈ L. As |x| = 2n+2 > 0, there has to be a partition
of x into three parts such that all three conditions of the lemma are satisfied.

All partitions that satisfy (1) are of the form:

u = ai

v = aj

w = an−(i+j)banb

where i + j ≤ n. From (2) we know that j > 0. Next we examine if we can find some
values for i and j such that (3) also holds for k = 0:

uv0w = uw = aian−(i+j)banb = ap−jbanb .

Since j > 0, p− j < p so uv0w /∈ L for any choice of i and j. Thus, L is not regular.

Since we can define L using pattern expressions, we now know that pattern expressions
are strictly more expressive than regular expressions.

5. Problem: Prove that the language L = {w | w contains equally many a’s as b’s } is not
regular.

Solution:

Lemma: If L is a regular language, then there exists an integer n > 0 such that for each
string x ∈ n it holds that if |x| ≥ n, then x = uvw where (1) |uv| ≤ n, (2) |v| > 0, and
(3) uvkw ∈ L for every k ∈ N.

Consider x = anbn ∈ L. If L is regular, then we can divide x into three parts u, v, and w
such that all three conditions of the lemma hold. All partitions that satisfy (1) are of the
form:

u = ai

v = aj

w = an−(i+j)bn

1

where i + j ≤ n. From (2) we know that j > 0. Next we examine if we can find some
values for i and j such that (3) also holds for k = 0:

uv0w = uw = aian−(i+j)banb = ap−jbn /∈ L .

Since uv0w /∈ L for any i and j, L is not regular.

6. Problem: Design an algorithm for testing whether a given a context-free grammar G =
(V, Σ, P, S), generates a nonempty language, i.e. whether any terminal string x ∈ Σ∗ can
be derived from the start symbol S.

Solution:

The following procedure ?GeneratesNonemptyLanguage(G) takes a context-free gram-
mar G as its input and it returns the value true, if the language L(G) is not empty.

?GeneratesNonemptyLanguage(G = (V, Σ, P, S): context-free grammar)
T ← Σ
repeat |V − Σ| times

for each A→ X1 · · ·Xk ∈ P
if A 6∈ T ∧X1 · · ·Xk ∈ T k

T ← T ∪ {A}
if S ∈ T

return true
else

return false

The basic idea is to start from the set T = Σ of terminal symbols and then check whether
it is possible to “retreat”to S using productions of P reversed. At each step a nonterminal
A is added to the set T if there exists some rule for A such that all symbols in the right
side belong to T . These steps are repeated |V − Σ| times.

To see why |V − Σ| steps are enough, let us consider the word z ∈ L(G) such that z has
the smallest parse tree of all words in L(G). If z has has a derivation of the form:

S →∗ uAy →∗ uvAxy →∗ uvwxy

where u, v, w, x, y ∈ Σ∗, then also z′ = uwy can be derived using the rules of the gram-
mar1. In that case, the parse tree of z′ is smaller than that of z contradicting our earlier
assumption. Now we see that in the minimal parse tree of z it is not possible to have two
occurrences of a nonterminal A in a single branch so we have to iterate over the set T
only as many times as there are nonterminals in the grammar.

Consider the grammar G:

S → BAB | ABA

A→ aAS | bBa

B → bBS | c

The computation of T proceeds as follows:

T0 = {a, b, c}

T1 = {a, b, c, B} (B → c)

T2 = {a, b, c, A, B} (A→ bBa)

T3 = {a, b, c, A, B, C, S} (S → BAB, S → ABA)

Since |V − Σ| = 3, the algorithm terminates and T = T3 so L(G) is not empty. The
smallest parse-tree of a z ∈ L(G) is:

1Compare this with the pumping theorem of context-free languages.

2

S

B

c

A

b B

c

b

B

c

Appendix: Chomsky normal form and CYK-algorithm

Let’s change the grammar:

P = {S → aAS | bBS | ε

A→ aAA | b,

B → bBB | a}

into Chomsky normal form, and check with CYK-algorithm whether words abb and abba
belong to language L(G).

A grammar is in Chomsky normal form, if the following conditions are met:

1. Only the initial symbol S can generate an empty string.

2. The initial symbol S does not occur in the right hand side of any rule.

3. All rules are of form A→ BC or A→ a (where A, B ja C are nonterminals and a a
terminal symbol), except for rule S → ε (if such a rule exists).

The grammar is put into the normal form in phases.

1. Initial symbol is removed from right side of the rules.

Because there are rules S → aAS and S → bBS in the grammar, let’s add a new
starting symbol S′ and a rule S′ → S. The resulting set of rules is

S′ → S,

S → aAS | bBS | ε

A→ aAA | b,

B → bBB | a

2. ε-productions are removed.

Because in the Chomsky normal form only the initial symbol S′ may generate ε,
other ε rules must be removed from the grammar. We start by computing the set of
erasable nonterminals: NULL:

NULL0 ={S} (S → ε)

NULL1 ={S, S′} (S′ → S)

NULL2 ={S, S′} = NULL

Next, the rules A→ X1 · · ·Xn are replaced by a set of rules

A→ α1 · · ·α2, where αi =

{

Xi, Xi /∈ NULL

Xi or ε, Xi ∈ NULL

Finally, we remove all rules of form A → ε (except for rule S′ → ε). As the result
we get rule set2:

2To be exact, now we should add a new initial symbol S′′ and rules S′′ → ε|S′, but in this case we can use

S′ as the starting symbol without problems.

3

S′ → S | ε

S → aAS | aA | bBS | bB

A→ aAA | b,

B → bBB | a

3. Unit productions are removed.

Next we remove from the grammar all rules of form A→ B where both A and B are
nonterminals.

First, we compute sets F (A) for all A ∈ V − Σ:

F (A) = F (B) = F (S) = ∅

F (S′) = {S}

Nonterminal B belongs to set F (A) exactly when we can derive B from A using only
unit productions:

Rule A → B is replaced by {A → w | ∃C ∈ F (B) ∪ {B} : C → w ∈ P}. As the
result we get a set of rules

S′ → aAS | aA | bBS | bB | ε

S → aAS | aA | bBS | bB

A→ aAA | b,

B → bBB | a

4. Too long productions are removed.

In the last phase we add into the grammar a new nonterminal Cσ and a rule Cσ → σ
for all σ ∈ Σ and divide all rules A→ w (|w| > 2) into a chain of rules, all of which
consist of exactly two symbols.

The Chomsky normal form for the given grammar is the following set of rules:

S′ → CaS′

1 | CaA | CbS
′

2 | CbB | ε

S′

1 → AS

S′

2 → BS

S → CaS1 | CaA | CbS2 | CbB

S1 → AS

S2 → BS

A→ CaA1 | b

A1 → AA

B → CaB1 | a

B1 → BB

Ca → a

Cb → b

Using CYK-algorithm we can check whether word x = x1 · · ·xn belongs to the language
defined by grammar G. During the progress of algorithm we compute nonterminal sets
Ni,j . Set Ni,j includes all those nonterminals, which can be used to derive substring
xi · · ·xj . We can apply dynamic programming for computing the sets:

Ni,i = {A | (A→ xi) ∈ P}

Ni,i+k = {A | ∃B, C ∈ V − Σ s. t. (A→ BC) ∈ P and

∃j : i ≤ j < i + k s. e B ∈ Ni,j ∧ C ∈ Nj+1,i+k}

4

Let’s look at the grammar we got above and word abba. First we compute sets Ni,i, i ≤ 4:

i→
Ni,i+k 1 : a 2 : b 3 : b 4 : a

k ↓ 0 abba abba abba abba
{B, Ca} {A, Cb} {B, Ca} {A, Cb}

On each square of the array it has been denoted, which substring the square corresponds
to.

Next we compute N1,2. Now the only possible j = 1, so we look at sets N1,1 = {B, Ca}
ja N2,2 = {A, Cb}. The only rules of form A→ BC, B ∈ N1,1 and C ∈ N2,2, are: {S′ →
CaA, S → CaA}, so N1,2 = {S′, S}. The same way we can compute sets N2,3 = {A1} and
N3,4 = {S′, S}, so the second row of the array is

i→
Ni,i+k 1 : a 2 : b 3 : b 4 : a

0 abba abba abba abba
k ↓ {B, Ca} {A, Cb} {B, Ca} {A, Cb}

1 abba abba abba
{S′, S} {A1} {S′, S}

At square N1,3 we have to look at two alternatives,

j = 1 ⇒ N1,1 = {Ca, B} j = 2 ⇒ N1,2 = {S′, S}
N2,3 = {A1} N3,3 = {Cb, A}

The nonterminal set corresponding to case j = 1 is {A} (A → CaA1) and that of case
j = 2 is ∅, so N1,3 = {A}. We can continue the same way and and get the final table

i→
Ni,i+k 1 : a 2 : b 3 : b 4 : a

0 abba abba abba abba
{B, Ca} {A, Cb} {B, Ca} {A, Cb}

1 abba abba abba
k ↓ {S′, S} {A1} {S′, S}

2 abba abba
{A} {S′

1, S1}
3 abba

{S′, S, A1}

Since S′ ∈ N1,4, abba ∈ L(G). But, S′ /∈ N1,3, so abb /∈ L(G).

5

