4. Problem: Pattern expressions are a generalisation of regular expressions used e.g. in some text editing tools of UN*X operating systems. In addition to the usual regular expression constructs, a pattern expression may contain string variables, including the constraint that any two appearances of the same variable must correspond to the same substring. Thus e.g. $a b X b^{*} X a$ and $a X(a \cup b)^{*} Y X(a \cup b)^{*} Y a$ are pattern expressions over the alphabet $\{a, b\}$. The first one of these describes the language $\left\{a w b^{n} w a \mid w \in\right.$ $\left.\{a, b\}^{*}, n \geq 0\right\}$. Prove that pattern expressions are a proper generalisation of regular expressions, i.e. that pattern expressions can be used to describe also some nonregular languages.

## Answer:

Consider the pattern expression $X X$. This expression denotes the language $L=\{z z \mid$ $z \in\{a, b\}^{*}$. Suppose that $L$ is regular. Then, the pumping lemma for regular languages holds for it:
Lemma: If $L$ is a regular language, then there exists an integer $n>0$ such that for each string $x \in n$ it holds that if $|x| \geq n$, then $x=u v w$ where (1) $|u v| \leq n$, (2) $|v|>0$, and (3) $u v^{k} w \in L$ for every $k \in \mathbb{N}$.

Let us examine the string $x=a^{n} b a^{n} b \in L$. As $|x|=2 n+2>0$, there has to be a partition of $x$ into three parts such that all three conditions of the lemma are satisfied.
All partitions that satisfy (1) are of the form:

$$
\begin{aligned}
u & =a^{i} \\
v & =a^{j} \\
w & =a^{n-(i+j)} b a^{n} b
\end{aligned}
$$

where $i+j \leq n$. From (2) we know that $j>0$. Next we examine if we can find some values for $i$ and $j$ such that (3) also holds for $k=0$ :

$$
u v^{0} w=u w=a^{i} a^{n-(i+j)} b a^{n} b=a^{p-j} b a^{n} b .
$$

Since $j>0, p-j<p$ so $u v^{0} w \notin L$ for any choice of $i$ and $j$. Thus, $L$ is not regular.
Since we can define $L$ using pattern expressions, we now know that pattern expressions are strictly more expressive than regular expressions.
5. Problem: Prove that the language $L=\{w \mid w$ contains equally many $a$ 's as $b$ 's $\}$ is not regular.

## Solution:

Lemma: If $L$ is a regular language, then there exists an integer $n>0$ such that for each string $x \in n$ it holds that if $|x| \geq n$, then $x=u v w$ where (1) $|u v| \leq n$, (2) $|v|>0$, and (3) $u v^{k} w \in L$ for every $k \in \mathbb{N}$.

Consider $x=a^{n} b^{n} \in L$. If $L$ is regular, then we can divide $x$ into three parts $u, v$, and $w$ such that all three conditions of the lemma hold. All partitions that satisfy (1) are of the form:

$$
\begin{aligned}
u & =a^{i} \\
v & =a^{j} \\
w & =a^{n-(i+j)} b^{n}
\end{aligned}
$$

where $i+j \leq n$. From (2) we know that $j>0$. Next we examine if we can find some values for $i$ and $j$ such that (3) also holds for $k=0$ :

$$
u v^{0} w=u w=a^{i} a^{n-(i+j)} b a^{n} b=a^{p-j} b^{n} \notin L
$$

Since $u v^{0} w \notin L$ for any $i$ and $j, L$ is not regular.
6. Problem: Design an algorithm for testing whether a given a context-free grammar $G=$ $(V, \Sigma, P, S)$, generates a nonempty language, i.e. whether any terminal string $x \in \Sigma^{*}$ can be derived from the start symbol $S$.

## Solution:

The following procedure ?GENERATESNONEMPTYLANGUAGE $(G)$ takes a context-free gram$\operatorname{mar} G$ as its input and it returns the value true, if the language $L(G)$ is not empty.

```
?GeneratesnonemptyLanguage \((G=(V, \Sigma, P, S)\) : context-free grammar)
    \(T \leftarrow \Sigma\)
    repeat \(|V-\Sigma|\) times
        for each \(A \rightarrow X_{1} \cdots X_{k} \in P\)
            if \(A \notin T \wedge X_{1} \cdots X_{k} \in T^{k}\)
                \(T \leftarrow T \cup\{A\}\)
    if \(S \in T\)
        return true
    else
        return false
```

The basic idea is to start from the set $T=\Sigma$ of terminal symbols and then check whether it is possible to "retreat" to $S$ using productions of $P$ reversed. At each step a nonterminal $A$ is added to the set $T$ if there exists some rule for $A$ such that all symbols in the right side belong to $T$. These steps are repeated $|V-\Sigma|$ times.
To see why $|V-\Sigma|$ steps are enough, let us consider the word $z \in L(G)$ such that $z$ has the smallest parse tree of all words in $L(G)$. If $z$ has has a derivation of the form:

$$
S \rightarrow^{*} u A y \rightarrow^{*} u v A x y \rightarrow^{*} u v w x y
$$

where $u, v, w, x, y \in \Sigma^{*}$, then also $z^{\prime}=u w y$ can be derived using the rules of the gram$\operatorname{mar}^{1}$. In that case, the parse tree of $z^{\prime}$ is smaller than that of $z$ contradicting our earlier assumption. Now we see that in the minimal parse tree of $z$ it is not possible to have two occurrences of a nonterminal $A$ in a single branch so we have to iterate over the set $T$ only as many times as there are nonterminals in the grammar.
Consider the grammar $G$ :

$$
\begin{aligned}
& S \rightarrow B A B \mid A B A \\
& A \rightarrow a A S \mid b B a \\
& B \rightarrow b B S \mid c
\end{aligned}
$$

The computation of $T$ proceeds as follows:

$$
T_{0}=\{a, b, c\}
$$

$$
T_{1}=\{a, b, c, B\} \quad(B \rightarrow c)
$$

$$
T_{2}=\{a, b, c, A, B\} \quad(A \rightarrow b B a)
$$

$$
T_{3}=\{a, b, c, A, B, C, S\} \quad(S \rightarrow B A B, S \rightarrow A B A)
$$

Since $|V-\Sigma|=3$, the algorithm terminates and $T=T_{3}$ so $L(G)$ is not empty. The smallest parse-tree of a $z \in L(G)$ is:

[^0]

## Appendix: Chomsky normal form and CYK-algorithm

Let's change the grammar:

$$
\begin{aligned}
P=\{S & \rightarrow a A S|b B S| \varepsilon \\
& A \rightarrow a A A \mid b, \\
B & \rightarrow b B B \mid a\}
\end{aligned}
$$

into Chomsky normal form, and check with CYK-algorithm whether words $a b b$ and $a b b a$ belong to language $L(G)$.
A grammar is in Chomsky normal form, if the following conditions are met:

1. Only the initial symbol $S$ can generate an empty string.
2. The initial symbol $S$ does not occur in the right hand side of any rule.
3. All rules are of form $A \rightarrow B C$ or $A \rightarrow a$ (where $A, B$ ja $C$ are nonterminals and $a$ a terminal symbol), except for rule $S \rightarrow \varepsilon$ (if such a rule exists).

The grammar is put into the normal form in phases.

## 1. Initial symbol is removed from right side of the rules.

Because there are rules $S \rightarrow a A S$ and $S \rightarrow b B S$ in the grammar, let's add a new starting symbol $S^{\prime}$ and a rule $S^{\prime} \rightarrow S$. The resulting set of rules is

$$
\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow a A S|b B S| \varepsilon \\
A & \rightarrow a A A \mid b \\
B & \rightarrow b B B \mid a
\end{aligned}
$$

2. $\varepsilon$-productions are removed.

Because in the Chomsky normal form only the initial symbol $S^{\prime}$ may generate $\varepsilon$, other $\varepsilon$ rules must be removed from the grammar. We start by computing the set of erasable nonterminals: NULL:

$$
\begin{array}{ll}
\operatorname{NULL}_{0}=\{S\} & (S \rightarrow \varepsilon) \\
\text { NULL }_{1}=\left\{S, S^{\prime}\right\} & \left(S^{\prime} \rightarrow S\right) \\
\text { NULL }_{2}=\left\{S, S^{\prime}\right\}=\mathrm{NULL} &
\end{array}
$$

Next, the rules $A \rightarrow X_{1} \cdots X_{n}$ are replaced by a set of rules

$$
A \rightarrow \alpha_{1} \cdots \alpha_{2}, \quad \text { where } \alpha_{i}=\left\{\begin{array}{l}
X_{i}, X_{i} \notin \text { NULL } \\
X_{i} \text { or } \varepsilon, X_{i} \in \text { NULL }
\end{array}\right.
$$

Finally, we remove all rules of form $A \rightarrow \varepsilon$ (except for rule $S^{\prime} \rightarrow \varepsilon$ ). As the result we get rule set ${ }^{2}$ :

[^1]\[

$$
\begin{aligned}
S^{\prime} & \rightarrow S \mid \varepsilon \\
S & \rightarrow a A S|a A| b B S \mid b B \\
A & \rightarrow a A A \mid b \\
B & \rightarrow b B B \mid a
\end{aligned}
$$
\]

## 3. Unit productions are removed.

Next we remove from the grammar all rules of form $A \rightarrow B$ where both $A$ and $B$ are nonterminals.
First, we compute sets $F(A)$ for all $A \in V-\Sigma$ :

$$
\begin{aligned}
F(A) & =F(B)=F(S)=\emptyset \\
F\left(S^{\prime}\right) & =\{S\}
\end{aligned}
$$

Nonterminal $B$ belongs to set $F(A)$ exactly when we can derive $B$ from $A$ using only unit productions:
Rule $A \rightarrow B$ is replaced by $\{A \rightarrow w \mid \exists C \in F(B) \cup\{B\}: C \rightarrow w \in P\}$. As the result we get a set of rules

$$
\begin{aligned}
S^{\prime} & \rightarrow a A S|a A| b B S|b B| \varepsilon \\
S & \rightarrow a A S|a A| b B S \mid b B \\
A & \rightarrow a A A \mid b \\
B & \rightarrow b B B \mid a
\end{aligned}
$$

## 4. Too long productions are removed.

In the last phase we add into the grammar a new nonterminal $C_{\sigma}$ and a rule $C_{\sigma} \rightarrow \sigma$ for all $\sigma \in \Sigma$ and divide all rules $A \rightarrow w(|w|>2)$ into a chain of rules, all of which consist of exactly two symbols.
The Chomsky normal form for the given grammar is the following set of rules:

$$
\begin{aligned}
S^{\prime} & \rightarrow C_{a} S_{1}^{\prime}\left|C_{a} A\right| C_{b} S_{2}^{\prime}\left|C_{b} B\right| \varepsilon \\
S_{1}^{\prime} & \rightarrow A S \\
S_{2}^{\prime} & \rightarrow B S \\
S & \rightarrow C_{a} S_{1}\left|C_{a} A\right| C_{b} S_{2} \mid C_{b} B \\
S_{1} & \rightarrow A S \\
S_{2} & \rightarrow B S \\
A & \rightarrow C_{a} A_{1} \mid b \\
A_{1} & \rightarrow A A \\
B & \rightarrow C_{a} B_{1} \mid a \\
B_{1} & \rightarrow B B \\
C_{a} & \rightarrow a \\
C_{b} & \rightarrow b
\end{aligned}
$$

Using CYK-algorithm we can check whether word $x=x_{1} \cdots x_{n}$ belongs to the language defined by grammar $G$. During the progress of algorithm we compute nonterminal sets $N_{i, j}$. Set $N_{i, j}$ includes all those nonterminals, which can be used to derive substring $x_{i} \cdots x_{j}$. We can apply dynamic programming for computing the sets:

$$
\begin{aligned}
N_{i, i}= & \left\{A \mid\left(A \rightarrow x_{i}\right) \in P\right\} \\
N_{i, i+k}= & \{A \mid \exists B, C \in V-\Sigma \text { s. t. }(A \rightarrow B C) \in P \text { and } \\
& \left.\exists j: i \leq j<i+k \text { s. e } B \in N_{i, j} \wedge C \in N_{j+1, i+k}\right\}
\end{aligned}
$$

Let's look at the grammar we got above and word $a b b a$. First we compute sets $N_{i, i}, i \leq 4$ :

|  | $i \rightarrow$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $N_{i, i+k}$ | $1: a$ | $2: b$ | $3: b$ | $4: a$ |
| 0 | $\underline{a} b b a$ | $a \underline{b} b a$ | $a b \underline{b} a$ | $a b b \underline{a}$ |
|  | $\left\{B, C_{a}\right\}$ | $\left\{A, C_{b}\right\}$ | $\left\{B, C_{a}\right\}$ | $\left\{A, C_{b}\right\}$ |

On each square of the array it has been denoted, which substring the square corresponds to.
Next we compute $N_{1,2}$. Now the only possible $j=1$, so we look at sets $N_{1,1}=\left\{B, C_{a}\right\}$ ja $N_{2,2}=\left\{A, C_{b}\right\}$. The only rules of form $A \rightarrow B C, B \in N_{1,1}$ and $C \in N_{2,2}$, are: $\left\{S^{\prime} \rightarrow\right.$ $\left.C_{a} A, S \rightarrow C_{a} A\right\}$, so $N_{1,2}=\left\{S^{\prime}, S\right\}$. The same way we can compute sets $N_{2,3}=\left\{A_{1}\right\}$ and $N_{3,4}=\left\{S^{\prime}, S\right\}$, so the second row of the array is

| $i \rightarrow$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $N_{i, i+k}$ | 1:a | $2: b$ | $3: b$ | 4:a |
| 0 | $\underline{a b b a}$ | abba | $a b \underline{b a}$ | $a b b \underline{a}$ |
| $k \downarrow$ | $\left\{B, C_{a}\right\}$ | $\left\{A, C_{b}\right\}$ | $\left\{B, C_{a}\right\}$ | $\left\{A, C_{b}\right\}$ |
| 1 | $\left\{\frac{a b b a}{S^{\prime}} \cdot S\right\}$ | $\begin{aligned} & a b b a \\ & \left\{\overline{A_{1}}\right\} \end{aligned}$ | $\begin{gathered} a b b a \\ \left\{S^{\prime}, S\right\} \end{gathered}$ |  |

At square $N_{1,3}$ we have to look at two alternatives,

$$
\begin{array}{rlrl}
j=1 \Rightarrow & N_{1,1} & =\left\{C_{a}, B\right\} & j=2 \Rightarrow \\
& N_{2,3}=\left\{A_{1}\right\} & & N_{1,2}=\left\{S^{\prime}, S\right\} \\
N_{3,3} & =\left\{C_{b}, A\right\}
\end{array}
$$

The nonterminal set corresponding to case $j=1$ is $\{A\}\left(A \rightarrow C_{a} A_{1}\right)$ and that of case $j=2$ is $\emptyset$, so $N_{1,3}=\{A\}$. We can continue the same way and and get the final table


Since $S^{\prime} \in N_{1,4}, a b b a \in L(G)$. But, $S^{\prime} \notin N_{1,3}$, so $a b b \notin L(G)$.


[^0]:    ${ }^{1}$ Compare this with the pumping theorem of context-free languages.

[^1]:    ${ }^{2}$ To be exact, now we should add a new initial symbol $S^{\prime \prime}$ and rules $S^{\prime \prime} \rightarrow \varepsilon \mid S^{\prime}$, but in this case we can use $S^{\prime}$ as the starting symbol without problems.

