T-79.1001 Kevit 2006
Introduction to Theoretical Computer Science (T)

Session 11

Answers to demonstration exercises

4. Problem:

Prove, without appealing to Rice’s theorem, that the following problem is undecidable:
Given a Turing machine M; does M accept the empty string?

Solution:

First we define a language L = {M | M halts with the input €}. Now, L is recursive
if and only if the decision problem in the exercise statement is decisive. Next we show
that the language H = {Mw | M halts with input w} can be recursively reduced to L
(denoted H <,,, L) so L is at least as difficult as H. Since H is not recursive, L may not
be recursive, either.

The concept of a recursive reduction is defined as follows: Let A C ¥* and B C I'* be
languages. Now A <,, B if and only if there exists a recursive functionf : ¥* — I'* such
that

YweXr:weAs flw)eB .

In this case we want to find a function f such that f(Mw) € L if and only if Mw € H. In
practice this means that we want to find a systematic way to construct a Turing machine
M’ that halts with an empty input exactly when M halts with w = wyws - - - w,.

Fortunately, this is an easy thing to do: M’ starts by writing w to its tape and after that
it simulates M. Now M’ stops only if M stops.

Formally, f can be defined as:

f(<Qa Ea Fv 57 QO7qaCC7qrej>7wlw2 e wn) = <Ql7 Za F75I7Q67 Gacc qrej>7

where

Q' =QU{g|0<i<n}

&' =0U{{g}, e g1, wiv1, R) |0 <d <n}
U{{gn 2, qp, 2, L) | € TU{<}}
U{(¢,,> 9, >, R)}

Since we add only a finite number of states and transitions to M (n has to be finite), f
is trivially recursive.

5. Problem: Prove the following connections between recursive functions and languages:

(i) A language A C X* is recursive (“Turing-decidable”), if and only its characteristic

function
B |1, ifze 4
XA - ¥ — {0»1}7 XA(x) - { 07 if ¢ A

is a recursive (“Turing-computable”) function.

(ii) Alanguage A C X* is recursively enumerable (“semidecidable”, “Turing-recognisable”),
if and only if either A = () or there exists a recursive function g : {0,1}* — X* such
that

A={g(z) [z €{0,1}"}.

Solution: We start by defining five simple helper machines:

1 writes ’1’ to the input tape, moves the read/write head to right and stops.

0 writes ’0’ to the tape and stops.

C empties the input tape, moves the head to the beginning of the tape and stops.
NEXT reads the input x € ¥* and replaces it with the lexicographic successor of x.

Cmp*I compares the contents of the input tapes i and j of a multi-tape Turing
machine and accepts if they are identical.

Since the machines are simple, they are not presented here.

(i)

[=] Let A C ¥* be a recursive language. Then there exists a Turing machine M 4:

Ma =(Q,%, T, 0,0, Gacc, Grej)
such that
Vw e X w e L& (q,w) Fiy, (Gace, @) ja
w & L < (qo,w) Py, (grej, @)

We construct a machine M by combining M4 with machines 1, 0, C' as follows:

" O—00—00
0
0 ® 9@ 9@

If w € L, then M4 accepts w. After that M clears the tape and writes 1 to the tape.
Otherwise 0 is written. Since A is recursive, M 4 halts always so also M halts and it

lLbwe A
O,wé¢ A
[«<] Suppose that the function x(w) is recursive. Then there exists a Turing machine
M, that computes it. We can now construct a machine M as follows:

computes the function y(w) = { that is the characteristic function of A.

Now M accepts w whenever x(w) = 1 and rejects it when y(w) = 0, so M decides
the language A and A is recursive.

(ii) If A =0, then trivially A € RE and g(x) = 0 is its characteristic function.

If there exists a function g that fulfills the conditions, then there exists a Turing
machine M, that computes g. We can trivially modify it so that it becomes a 2-tape
machine M;’2 that computes g but stores the result in the second tape instead of
the first. We now construct a 3-tape machine as follows:

NEXT? M3 ' @ @
© O—0 O O

&

The machine gets its input from its first tape and it stays untouched for the whole
computation. In each iteration M4 replaces the bit string on the second tape by
its lexicographic successor y, computes g(y) and writes the output on the third tape.
Finally, the contents of tapes 1 and 3 are compared and if they match, the word is
accepted, otherwise the iteration proceeds into the next round.

[<] Consider the word w € A. Suppose that a recursive function g that fulfills the
conditions exists. Then w = g(z) for some x = z1x5 - --x, where n is finite. Since
each finite string has a finite number of predecessors in the lexicographic order,
NEXT eventually generates x, M, 92’3 generates w on the third tape and M4 accepts
the word. Thus, M4 recognizes the language A so A € RE.

[=] Next, suppose that A € RE — {0}. Then there exists a Turing machine M4 that
recognizes it. We now define a helper machine M, ; that simulates M, for i steps.
The machine M4, accepts z if M4 accepts it using at most 7 steps, and rejects it
otherwise. We note that M, ; always halts.

We construct the function g with the help of M, ;. Every input z and bound
i is encoded into bit strings using the function c¢(z,y) = 0710Y. We define that
gle(z,y)) = =z, if Ma, accepts z. We define that ¢’ : {0,1}* — {0,1}* is the
function:

, xz, w=0710Y and M, 4(x) accepts
g (w) = .
Tg, otherwise ,

where xg € A. Finally, g(z) = d(¢’'(z)) where d is a function that maps a bit string
0% into the zth element of n ¥* in the lexicographic order. The value of ¢’ may be
computed in a finite time since M4 ,(x) always halts. Thus, ¢’ is recursive and so
also g is.

Note that while g always exists, it is not always possible to find it since in the general
case it is an undecidable problem to find an element xg € A that is needed for the
definition.

