Introduction to Theoretical Computer Science (T)

Session 11
Answers to demonstration exercises

4. Problem:

Prove, without appealing to Rice's theorem, that the following problem is undecidable:
Given a Turing machine M; does M accept the empty string?

Solution:

First we define a language $L=\{M \mid M$ halts with the input $\varepsilon\}$. Now, L is recursive if and only if the decision problem in the exercise statement is decisive. Next we show that the language $H=\{M w \mid M$ halts with input $w\}$ can be recursively reduced to L (denoted $H \leq_{m} L$) so L is at least as difficult as H. Since H is not recursive, L may not be recursive, either.
The concept of a recursive reduction is defined as follows: Let $A \subseteq \Sigma^{*}$ and $B \subseteq \Gamma^{*}$ be languages. Now $A \leq_{m} B$ if and only if there exists a recursive function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ such that

$$
\forall w \in \Sigma^{*}: w \in A \Leftrightarrow f(w) \in B
$$

In this case we want to find a function f such that $f(M w) \in L$ if and only if $M w \in H$. In practice this means that we want to find a systematic way to construct a Turing machine M^{\prime} that halts with an empty input exactly when M halts with $w=w_{1} w_{2} \cdots w_{n}$.
Fortunately, this is an easy thing to do: M^{\prime} starts by writing w to its tape and after that it simulates M. Now M^{\prime} stops only if M stops.
Formally, f can be defined as:

$$
f\left(\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\rangle, w_{1} w_{2} \cdots w_{n}\right)=\left\langle Q^{\prime}, \Sigma, \Gamma, \delta^{\prime}, q_{0}^{\prime}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\rangle
$$

where

$$
\begin{aligned}
Q^{\prime}= & Q \cup\left\{q_{i}^{\prime} \mid 0 \leq i \leq n\right\} \\
\delta^{\prime}=\delta & \cup\left\{\left\langle q_{i}^{\prime}, \varepsilon, q_{i+1}^{\prime}, w_{i+1}, R\right\rangle \mid 0 \leq i<n\right\} \\
& \cup\left\{\left\langle q_{n}^{\prime}, x, q_{n}^{\prime}, x, L\right\rangle \mid x \in \Gamma \cup\{<\}\right\} \\
& \cup\left\{\left\langle q_{n}^{\prime},>, q_{0},>, R\right\rangle\right\}
\end{aligned}
$$

Since we add only a finite number of states and transitions to M (n has to be finite), f is trivially recursive.
5. Problem: Prove the following connections between recursive functions and languages:
(i) A language $A \subseteq \Sigma^{*}$ is recursive ("Turing-decidable"), if and only its characteristic function

$$
\chi_{A}: \Sigma^{*} \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A ; \\ 0, & \text { if } x \notin A\end{cases}
$$

is a recursive ("Turing-computable") function.
(ii) A language $A \subseteq \Sigma^{*}$ is recursively enumerable ("semidecidable", "Turing-recognisable"), if and only if either $A=\emptyset$ or there exists a recursive function $g:\{0,1\}^{*} \rightarrow \Sigma^{*}$ such that

$$
A=\left\{g(x) \mid x \in\{0,1\}^{*}\right\} .
$$

Solution: We start by defining five simple helper machines:

- 1 writes ' 1 ' to the input tape, moves the read/write head to right and stops.
- $\mathbf{0}$ writes ' 0 ' to the tape and stops.
- C empties the input tape, moves the head to the beginning of the tape and stops.
- NEXT reads the input $x \in \Sigma^{*}$ and replaces it with the lexicographic successor of x.
- $C m p^{i, j}$ compares the contents of the input tapes i and j of a multi-tape Turing machine and accepts if they are identical.
Since the machines are simple, they are not presented here.
(i) $[\Rightarrow]$ Let $A \subseteq \Sigma^{*}$ be a recursive language. Then there exists a Turing machine M_{A} :

$$
M_{A}=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\rangle
$$

such that

$$
\begin{gathered}
\forall w \in \Sigma^{*}: w \in L \Leftrightarrow\left(q_{0}, w\right) \vdash_{M_{A}}^{*}\left(q_{\mathrm{acc}}, \alpha\right) \quad \mathrm{ja} \\
w \notin L \Leftrightarrow\left(q_{0}, w\right) \vdash_{M_{A}}^{*}\left(q_{\mathrm{rej}}, \alpha\right)
\end{gathered}
$$

We construct a machine M by combining M_{A} with machines $\mathbf{1}, \mathbf{0}, C$ as follows:

If $w \in L$, then M_{A} accepts w. After that M clears the tape and writes 1 to the tape. Otherwise 0 is written. Since A is recursive, M_{A} halts always so also M halts and it computes the function $\chi(w)=\left\{\begin{array}{l}1, w \in A \\ 0, w \notin A\end{array}\right.$ that is the characteristic function of A. [$\Leftarrow]$ Suppose that the function $\chi(w)$ is recursive. Then there exists a Turing machine M_{χ} that computes it. We can now construct a machine M as follows:

Now M accepts w whenever $\chi(w)=1$ and rejects it when $\chi(w)=0$, so M decides the language A and A is recursive.
(ii) If $A=\emptyset$, then trivially $A \in R E$ and $g(x)=0$ is its characteristic function.

If there exists a function g that fulfills the conditions, then there exists a Turing machine M_{g} that computes g. We can trivially modify it so that it becomes a 2 -tape machine $M_{g}^{1,2}$ that computes g but stores the result in the second tape instead of the first. We now construct a 3 -tape machine as follows:

The machine gets its input from its first tape and it stays untouched for the whole computation. In each iteration M_{A} replaces the bit string x on the second tape by its lexicographic successor y, computes $g(y)$ and writes the output on the third tape. Finally, the contents of tapes 1 and 3 are compared and if they match, the word is accepted, otherwise the iteration proceeds into the next round.
[\Leftarrow] Consider the word $w \in A$. Suppose that a recursive function g that fulfills the conditions exists. Then $w=g(x)$ for some $x=x_{1} x_{2} \cdots x_{n}$ where n is finite. Since each finite string has a finite number of predecessors in the lexicographic order, NEXT eventually generates $x, M_{g}^{2,3}$ generates w on the third tape and M_{A} accepts the word. Thus, M_{A} recognizes the language A so $A \in R E$.
$[\Rightarrow]$ Next, suppose that $A \in R E-\{\emptyset\}$. Then there exists a Turing machine M_{A} that recognizes it. We now define a helper machine $M_{A, i}$ that simulates M_{A} for i steps. The machine $M_{A, i}$ accepts x if M_{A} accepts it using at most i steps, and rejects it otherwise. We note that $M_{A, i}$ always halts.
We construct the function g with the help of $M_{A, i}$. Every input x and bound i is encoded into bit strings using the function $c(x, y)=0^{x} 10^{y}$. We define that $g(c(x, y))=x$, if $M_{A, y}$ accepts x. We define that $g^{\prime}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is the function:

$$
g^{\prime}(w)= \begin{cases}x, & w=0^{x} 10^{y} \text { and } M_{A, y}(x) \text { accepts } \\ x_{0}, & \text { otherwise }\end{cases}
$$

where $x_{0} \in A$. Finally, $g(x)=d\left(g^{\prime}(x)\right)$ where d is a function that maps a bit string 0^{x} into the x th element of $n \Sigma^{*}$ in the lexicographic order. The value of g^{\prime} may be computed in a finite time since $M_{A, y}(x)$ always halts. Thus, g^{\prime} is recursive and so also g is.
Note that while g always exists, it is not always possible to find it since in the general case it is an undecidable problem to find an element $x_{0} \in A$ that is needed for the definition.

