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4. Problem: Simplify the following regular expressions (i.e., design simpler expressions
describing the same languages):

(a) (∅∗ ∪ a)(a∗)∗(b ∪ a)b∗

(b) (a ∪ b)∗ ∪ ∅ ∪ (a ∪ b)b∗a∗

(c) a(b∗ ∪ a∗)(a∗b∗)∗

Solution:

(a)

(∅∗ ∪ a)(a∗)∗(b ∪ a)b∗ =(ε ∪ a)(a∗)∗(b ∪ a)b∗

=(ε ∪ a)a∗(b ∪ a)b∗

=a∗(b ∪ a)b∗

(b)
(a ∪ b)∗ ∪ ∅ ∪ (a ∪ b)b∗a∗ = (a ∪ b)∗

The result can be immediately seen from the fact that the �rst subexpression of the
union already generates all words in Σ∗.

(c)
a(b∗ ∪ a∗)(a∗b∗)∗ = a(a ∪ b)∗

Here we note that the subexpression R2 = (a∗b∗)∗ generates all strings that can be
generated by R1 = (b∗ ∪ a∗), so R1 may be removed.

5. Problem: Determine whether the regular expressions r1 = b∗a(a∗b∗)∗ and r2 = (a ∪ b)∗a(a ∪ b)∗

describe the same language, by constructing the (minimal) �nite state machines corre-
sponding to them.

Solution: For each regular language there exists a unique1 minimal deterministic �nite
automaton. Thus, we can check the equivalence of two regular expressions by generating
their corresponding minimal automata, and then checking whether they are identical.

We �rst construct the automaton corresponding to the regular expression r1:
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1Up to the naming of the states.
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Next, we remove the ε-transitions from the automaton:
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Now we notice that the automaton is already deterministic, so we may directly skip to
the minimization phase. The minimization algorithm identify states 1 and 2 together, as
well as states 6, 01, and 14. The resulting minimal automaton Mr1 is thus:
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Next we do the same construction for r2:
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Remove ε-transitions:
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We note that this automaton may be simpli�ed by combining all accepting states
into one state:
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Next, we determinize this automaton:

Det. state Nondet. states a b
A {1} {4, 9} {6}
B {4, 9} {4, 9} {6, 9} ×
C {6} {4, 9} {6}
D {6, 9} {4, 9} {6, 9} ×
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When we minimize this automaton, the result is:
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Because both r1 and r2 lead to the same minimal automaton, the languages L(r1)
and L(r2) are equivalent.

6. Problem: Prove that if L is a regular language, then so is L′ = {xy | x ∈ L, y /∈ L}.
Solution: The easiest way to prove that a language is regular is to use the closure
properties of regular languages; the class of regular languages is closed under the union,
concatenation, Kleene star, complementation, and the intersection.

In the language we are given a regular language L and we de�ne a new language by it:

L′ = {xy | x ∈ L ja y /∈ L}

The language L′ is the concatenation of languages L and its complement L (y /∈ L ⇒ y ∈
L). Since regular languages are closed under complementation and concatenation, L′ is
regular.
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We may also construct a �nite-state automaton that decides the language L′. Since L is
regular, there is some deterministic automaton M that decides it. We now construct an
automaton M that is otherwise similar to M except that all accepting states are made
rejecting and vice verse. Now M accepts the complement of L. We combine these two
machines into a new non-deterministic automaton M ′ by adding a non-deterministic e-
transition from all accepting states of M to the initial state of M . Now M ′ decides L′ so
L′ is regular.

4


