
T-79.1001/2 Kevät 2006
Introduction to Theoretical Computer Science (T/Y)
Session 3
Answers to demonstration exercises

4. Problem: Construct a non-deterministic �nite automaton that tests whether in a given
binary input sequence the third-to-the-last bit is a 1. Make the automaton deterministic
by using the subset construction.

Solution: The language is recognized by an automaton M = (Q,Σ, δ, q1, F ), where

Q = {q1, q2, q3, q4}
Σ = {a, b}
F = {q4},

and the transition function δ is de�ned as in the following picture:

q1 q2 q3 q4

1 0, 1 0, 1
0, 1

We construct a corresponding deterministic automaton M ′ by taking all possible subsets
of Q as its states (Q′ = P(Q)). These subsets are used to encode all possible computations
of M . For example, when M has read the input 010 it can be either in state q1 or in q3.
Thus, the automaton M ′ must end in the state {q1, q3} with the same input.

We construct the transition function δ′ by using the following table:

q 0 1 uusi nimi
{q1} {q1} {q1, q2} A

{q1, q2} {q1, q3} {q1, q2, q3} B
{q1, q3} {q1, q4} {q1, q2, q4} C

{q1, q2, q3} {q1, q3, q4} {q1, q2, q3, q4} D
{q1, q3, q4} {q1, q4} {q1, q2, q4} E×
{q1, q4} {q1} {q1, q2} F×

{q1, q2, q3, q4} {q1, q3, q4} {q1, q2, q3, q4} G×
{q1, q2, q4} {q1, q3} {q1, q2, q3} H×

All those states of Q′ that contain some original accepting state of M are accepting states
in M ′. In the table they are marked with a cross.

A

B

C

D

E

F

G

H

0
1

0

1

0
1

0

1

0

1
0

1

1

0

0

1

1



5. Problem: Show that if a language L ⊆ {a, b}∗ is recognized by some �nite automaton,
then so is the language LR = {wR | w ∈ L}. (The notation wR means the reverse of string
w, cf. problem 2/2.)

Solution: Let M = (Q,Σ, δ, q0, F ) be a �nite automaton that recognizes L (that is,
L = L(M)). We use it to form an automaton M ′:

M ′ = {Q ∪ {q′0},Σ, δ′, q′0, {q0}
δ′ = {(qi, a, qj) | δ(qj , a) = qi}

∪ {(q′0, ε, qi) | qi ∈ F},

where q′0 /∈ Q.

Intuitively this de�nition means that we get an automaton for LR by reversing all transi-
tions of M and by adding a new initial state that has empty transitions to all �nal states
of M . The new automaton has only one �nal state, the original initial state.

a

b

b

a b
a

⇐

a

b

b

a b

a

ε

ε

6. Problem: Show that if languages A and B over the alphabet Σ = {a, b} are recognized
by some �nite automata, then so are the languages Ā = Σ∗ −A, A ∪B, and A ∩B.

Solution: Let A,B ⊆ Σ∗ be languages that can be recognized by �nite automata. We
now show that Ā, A∪B, and A∩B can also be recognized by �nite automata by showing
how such automata can be constructed.

Ā: Let MA = (Q, Σ, δ, q0, F ) be a deterministic automaton1 that recognizes A (L(MA) =
A). We de�ne an automaton MĀ as follows:

MĀ = (Q,Σ, δ, q0, Q− F ) .

Automaton MĀ works otherwise just as MA, but its accecpting states are exchanged
with its rejecting states. Thus, MĀ accepts precisely those strings that MA rejects,
and rejects those that MA accepts, so L(MĀ) = Ā.

For example, consider an automaton that recognizes the language:

A = {w ∈ Σ∗ | w is of the form axb, where x ∈ Σ∗} .

All strings that start with an a and end with a b are in L. The following two automata
recognize languages A and Ā:

MA:

a

b

a

b

a b

a, b

MĀ:

a

b

a

b

a b

a, b

1MA necessarily exists since any nondeterministic �nite automaton can be transformed into an equivalent

deterministic one.

2



Note that this construction works only if MA is deterministic. Try to �nd a counter
example for the nondeterministic case.

A ∪B: Let MA = (QA,Σ, δA, sA, FA) and MB = (QB ,Σ, δB , sB , FB) be �nite automata
that recognize languages A and B. We suppose that the state sets are distinct, that
is, QA ∩ QB = ∅. This is not a serious limitation since the states of one of the
automata can be renamed if necessary.

We construct a nondeterministic �nite automaton MA∪B as follows:

MA∪B = (Q,Σ, δ, s, F ) ,

where

Q = QA ∪QB ∪ {s}
F = FA ∪ FB

δ = δA ∪ δB ∪ {(s, ε, sa), (s, ε, sb)} .

We construct MA∩B by combining the automata MA and MB . The state s is a new
initial state and from there is a nondeterministic ε-transition to initial states of MA

and MB .

If string x ∈ A, MA∪B accepts it by �rst making a nondeterministic transition to
sA, and then doing the same sequence of transitions that MA would have done.
Similarily, if x ∈ B, the �rst transition is to sB .

For example, consider the automaton MA that was presented above and a new
automaton MB that recognizes the language:

B = {w ∈ Σ∗ | w has a substring bb} .

MB : a
b

a

b

a, b

The language A ∪B can be recognized by the following automaton:

MA∪B :

a

b

a

b

a b

a, b
a

b

a

b

a, b

ε

ε

Often also a new �nal state f and transitions {(f ′, ε, f) | f ′ ∈ FA ∪ FB} are added
to MA∪B . In this case F = {f}.

A ∩B: This claim is a corollary of the two previous constructions, since

A ∩B = A ∪B .

Let us examine again the above automata MA and MB construct MA∩B using the
above DeMorgan rule.

3



MĀ:

a

b

a

b

a b

a, b

MB̄ : a
b

a

b

a, b

MĀ∪B̄ :

q1

q2

q3

q4

a

b

a

b

a b

a, b

q5 q6
q7

a
b

a

b

a, b

ε

ε

Before MĀ∪B̄ can be complemented, it has to be determinised (the following au-
tomaton is minimal, details of minimization are left in appendix):

M ′
Ā∪B̄

:

{q1, q5}

{q3, qx}

{q2, q5}

{q4, q6}

{q4, q7}

{q2, q7}

a

b

a, b

a

b a b a

b

b

a

We get the desired automaton by exchanging the accepting and rejecting states:

MA∩B :

{q1, q5}

{q3, qx}

{q2, q5}

{q4, q6}

{q4, q7}

{q2, q7}

a

b

a, b

a

b a b a

b

b

a

We could also de�ne the intersection of two automata directly, using a method that
is analogous to the solution for the next exercise.

Appendix: minimizing an automaton

Using the determinising algorithm we can transform the automaton MĀ∪Ā (of exercise 5)

4



into the following form:

A

B

C

D

E

F

G H

a

b

a
b

a
b

a, b

a

b a b a

b

b

a

Now we want to �nd the minimal deterministic automaton that recognizes the same

language. One algorithm is to de�ne an equivalence relation
0≡ on the set of states and

re�ne it step-by-step until we reach the desired relation ≡.
In the �rst phase of the algorithm we remove all unreachable states. Since in this case all
states are reachable, nothing has to be done.

Next, we construct the �rst equivalence partition such that all accepting states are in one
class and all rejecting states in another:

0-equivalence:
Class State a b
I A C (I) B (I)

B G (I) H (I)
C C (I) D (I)
D C (I) E (II)
F F (I) E (II)
G G (I) B (I)
H H (I) H (I)

II E F (I) E (II)

We see from the table that from the class I states D and F the b-transition leads to a
state in class II, while for all other class I states the same transition leads to a class I
state. So we separate the two distinct states into their own class:

1-equivalence:
Class State a b
I A C (I) B (I)

B G (I) H (I)
C C (I) D (III)
G G (I) B (I)
H H (I) H (I)

II E F (III) E (II)
III D C (I) E (II)

F F (III) E (II)

This time states C and F do not �t in their classes and they have to be separated. This
procedure is continued until all classes are consistent:

5



2-equivalence: 3-equivalence:
Class State a b Class State a b
I A C (IV) B (I) I A C (IV) B (VI)

B G (I) H (I) II E F (V) E (II)
G G (I) B (I) III D C (IV) E (II)
H H (I) H (I) IV C C (IV) D (III)

II E F (V) E (II) V F F (V) E (II)
III D C (IV) E (II) VI B G (VI) H (VI)
IV C C (IV) D (III) G G (VI) B (VI)
V F F (V) E (II) H H (VI) H (VI)

All classes are now consistent so we can construct an automaton whose states are the
equivalence classes. The minimized automaton is shown as a state diagram in the solution
for exercise 5.

As a term, k-equivalence means that all states in a equivalence class treat all inputs that
are at most k symbols long in the same way; either they all accept the input or they all
reject it.

6


