4 Problem: Prove that the following de Morgan formulas hold for all sets $A, B \subseteq U$:

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}, \quad \overline{A \cap B}=\bar{A} \cup \bar{B}
$$

Answer: Two sets are equal when they have the same elements. Let us first examine the set $\overline{A \cup B}$. Let $a \in \overline{A \cup B}$. Then, $a \notin A \cup B$. By the definition of union this means that $a \notin A$ and $a \notin B$, so $a \in \bar{A}$ and $a \in \bar{B}$. This means that $a \in \bar{A} \cap \bar{B}$. Since every step in the proof preserves equivalence, the proof applies also for the other direction.
Next, consider $a \in \overline{A \cap B}$. Then, $a \notin A \cap B$ so $a \notin A$ or $a \notin B$. Now $a \in \bar{A}$ or $a \in \bar{B}$ so by definition of the union $a \in \bar{A} \cup \bar{B}$.
5. Problem: Define a relation \sim on the set $\mathbb{N} \times \mathbb{N}$ by the rule:

$$
(m, n) \sim(p, q) \quad \Leftrightarrow \quad m+n=p+q .
$$

Prove that this is an equivalence relation, and describe intuitively ("geometrically") the equivalence classes it determines.
Solution: The relation $\backsim \subseteq(\mathbb{N} \times \mathbb{N}) \times(\mathbb{N} \times \mathbb{N})$ is defined in the following way:

$$
(m, n) \sim(p, q) \quad \Leftrightarrow \quad m+n=p+q
$$

In other words, two pairs are equivalent when their sums are the same.
A relation is an equivalence relation when it is symmetric, transitive and reflexive.
i) The relation \backsim is symmetric, if $(m, n) \sim(p, q)$ always when $(p, q) \sim(m, n)$. Because

$$
m+n=p+q \Leftrightarrow p+q=m+n
$$

$((p, q),(m, n))$ is always in the relation when $((m, n),(p, q))$ is. Thus the relation is symmetric.
ii) The relation \backsim is reflexive, if for all $(m, n) \in \mathbb{N}$ holds that $(m, n) \sim(m, n)$. Since

$$
m+n=m+n
$$

the condition is fulfilled.
iii) The relation \backsim is transitive, if always when $(m, n) \sim(p, q)$ and $(p, q) \sim(k, l)$, also $(m, n) \sim(k, l)$.
Given

$$
m+n=p+q \wedge p+q=k+l
$$

then

$$
m+n=p+q=k+l \Rightarrow m+n=k+l
$$

and thus the relation is also transitive.
Because all three conditions hold, \backsim is an equivalence relation. Below, the first elements of the relation as a graph.

From the figure it can be seen that the equivalence classes defined by the relation correspond with the lines that are parallel to the line $y=-x$.
6. Problem:Prove by induction that if X is a finite set of cardinality $n=|X|$, then its power set $\mathcal{P}(X)$ is of cardinality $|\mathcal{P}(X)|=2^{n}$.
Solution: Base case: $X=\emptyset$. Then $\mathcal{P}(\emptyset)=\{\emptyset\}$ and $|\mathcal{P}(\emptyset)|=1=2^{0}$.
Induction hypothesis: we assume there exists a $k \in \mathbb{N}$ such that formula holds for all $n \leq k$.
Inductive step: let $|X|=k+1$. Denote $X=Y \cup\{x\}$. By the induction hypothesis $|\mathcal{P}(Y)|=2^{k}$. The set $\mathcal{P}(X)$ contains all elements of $\mathcal{P}(Y)$ and the union of the elements of $\mathcal{P}(Y)$ with $\{x\}$. Thus we get $|\mathcal{P}(X)|=2 \cdot 2^{k}=2^{k+1}$.

