T-79.1001 Spring 2006

Introduction to Theoretical Computer Science T Tutorial 8, 28–29 March Problems

Homework problems:

1. Show, using the pumping lemma for regular languages, that the language consisting of even-length palindromes,

$$\{ww^R \mid w \in \{a, b\}^*\}$$

is not regular.

2. Show, using the pumping lemma for context-free languages, that the language

$$\{ww \mid w \in \{a, b\}^*\}$$

is not context-free. (Hint: Consider strings of the form $a^nb^nca^nb^n$.)

3. Let A and B be countably infinite sets such that $A \cap B = \emptyset$. Show that then also the set $A \cup B$ is countably infinite. (*Extra question:* Show that the claim holds even without the assumption $A \cap B = \emptyset$.)

Demonstration problems:

- 4. Prove that the class of context-free languages is closed under unions, concatenations, and the Kleene star operation, i.e. if the languages $L_1, L_2 \subseteq \Sigma^*$ are context-free, then so are the languages $L_1 \cup L_2$, L_1L_2 and L_1^* .
- 5. Prove that the class of context-free languages is not closed under intersections and complements. (*Hint:* Represent the language $\{a^kb^kc^k\mid k\geq 0\}$ as the intersection of two context-free languages.)
- 6. Prove that the Cartesian product $\mathbb{N} \times \mathbb{N}$ is countably infinite. (*Hint:* Think of the pairs $(m, n) \in \mathbb{N} \times \mathbb{N}$ as embedded in the Euclidean (x, y) plane \mathbb{R}^2 . Enumerate the pairs by diagonals parallel to the line y = -x.) Conclude from this result that also the set \mathbb{Q} of rational numbers is countably infinite.