Introduction to Theoretical Computer Science T

Tutorial 8, 28-29 March
Problems

Homework problems:

1. Show, using the pumping lemma for regular languages, that the language consisting of even-length palindromes,

$$
\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}
$$

is not regular.
2. Show, using the pumping lemma for context-free languages, that the language

$$
\left\{w w \mid w \in\{a, b\}^{*}\right\}
$$

is not context-free. (Hint: Consider strings of the form $a^{n} b^{n} c a^{n} b^{n}$.)
3. Let A and B be countably infinite sets such that $A \cap B=\emptyset$. Show that then also the set $A \cup B$ is countably infinite. (Extra question: Show that the claim holds even without the assumption $A \cap B=\emptyset$.)

Demonstration problems:

4. Prove that the class of context-free languages is closed under unions, concatenations, and the Kleene star operation, i.e. if the languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ are context-free, then so are the languages $L_{1} \cup L_{2}, L_{1} L_{2}$ and L_{1}^{*}.
5. Prove that the class of context-free languages is not closed under intersections and complements. (Hint: Represent the language $\left\{a^{k} b^{k} c^{k} \mid k \geq 0\right\}$ as the intersection of two context-free languages.)
6. Prove that the Cartesian product $\mathbb{N} \times \mathbb{N}$ is countably infinite. (Hint: Think of the pairs $(m, n) \in \mathbb{N} \times \mathbb{N}$ as embedded in the Euclidean (x, y) plane \mathbb{R}^{2}. Enumerate the pairs by diagonals parallel to the line $y=-x$.) Conclude from this result that also the set \mathbb{Q} of rational numbers is countably infinite.
